IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v381y2025ics0306261924024309.html
   My bibliography  Save this article

Rule extraction from deep reinforcement learning controller and comparative analysis with ASHRAE control sequences for the optimal management of Heating, Ventilation, and Air Conditioning (HVAC) systems in multizone buildings

Author

Listed:
  • Razzano, Giuseppe
  • Brandi, Silvio
  • Piscitelli, Marco Savino
  • Capozzoli, Alfonso

Abstract

The paper introduces a novel methodology for optimizing the operation of a centralized Air Handling Unit (AHU) in a multi-zone building served by VAV boxes with interpretable rules extracted from a Deep Reinforcement Learning (DRL) controller trained to enhance energy efficiency and indoor temperature control. To ensure practical application, a Rule Extraction (RE) framework is developed, translating the DRL complex decision-making process into actionable rules using decision trees. A multi-action approach is proposed by developing three different regression trees for adjusting the supply water temperature, the position of the chiller valve, and the position of the economizer damper of the AHU. The extracted rules are benchmarked against the original DRL controller and two conventional control sequences based on ASHRAE 2006 and ASHRAE Guideline 36 within a high-fidelity co-simulation architecture combining Spawn of EnergyPlus and Python. The co-simulation environment uses EnergyPlus for building envelope and loads while HVAC components and controls are implemented in the equation-based modeling language Modelica. Results show that the RE-based controller closely approximates the performance of the DRL policy with an electric energy consumption only 3% higher, highlighting its ability to effectively mirror a more complex control logic, representing a transparent and easily implementable alternative. The controllers based on ASHRAE 2006 and ASHRAE Guideline 36 lead to higher energy consumption (for both chiller and fan) and violations of indoor temperature compared to both RE-based control and DRL. This study underscores the potential of integrating AI-driven control methods with interpretable rule-based systems, facilitating the adoption of advanced energy management strategies in real-world building automation systems.

Suggested Citation

  • Razzano, Giuseppe & Brandi, Silvio & Piscitelli, Marco Savino & Capozzoli, Alfonso, 2025. "Rule extraction from deep reinforcement learning controller and comparative analysis with ASHRAE control sequences for the optimal management of Heating, Ventilation, and Air Conditioning (HVAC) syste," Applied Energy, Elsevier, vol. 381(C).
  • Handle: RePEc:eee:appene:v:381:y:2025:i:c:s0306261924024309
    DOI: 10.1016/j.apenergy.2024.125046
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924024309
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.125046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:381:y:2025:i:c:s0306261924024309. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.