IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v381y2025ics0306261924023912.html
   My bibliography  Save this article

Unsupervised disaggregation of aggregated net load considering behind-the-meter PV based on virtual PV sample construction

Author

Listed:
  • Qu, Ziyu
  • Ge, Xinxin
  • Lu, Jinling
  • Wang, Fei

Abstract

Most of the distributed photovoltaics (PV) are installed behind the meter (BTM), single-meter deployments permit distribution system operators to monitor only the net load and exclude the BTM PV generation, so the growing prevalence of BTM PV installations negatively affects distribution system planning and the local balance of supply and demand. However, existing methods for net load disaggregation mainly rely on the installation of expensive monitoring devices and high-resolution sensors, and face challenges such as privacy concerns, data diversity, and communication barriers. In this paper, an unsupervised method for aggregated net load disaggregation is proposed that achieves accurate separation of BTM PV outputs and actual loads using only net load data and exogenous variables. First, a data-driven method is developed to construct the actual load sample matrix of customers. Then, a virtual PV sample construction method based on the self-feedback decoupling algorithm (SFDA) is proposed to tackle the invisibility of BTM PV resources. The method performs self-feedback learning and constructs the virtual PV samples by minimizing the long-term decomposition residuals, and generates the virtual PV sample matrix. Finally, the model learning results are employed to achieve net load disaggregation through the contextually supervised source separation (CSSS) algorithm. The study utilized real open-source data whereby analyses reveal the method greatly enhances the decoupling accuracy of unsupervised algorithms. Furthermore, it eliminates a series of problems associated with traditional supervised algorithms and expands the scope of unsupervised decoupling methods.

Suggested Citation

  • Qu, Ziyu & Ge, Xinxin & Lu, Jinling & Wang, Fei, 2025. "Unsupervised disaggregation of aggregated net load considering behind-the-meter PV based on virtual PV sample construction," Applied Energy, Elsevier, vol. 381(C).
  • Handle: RePEc:eee:appene:v:381:y:2025:i:c:s0306261924023912
    DOI: 10.1016/j.apenergy.2024.125007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924023912
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.125007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:381:y:2025:i:c:s0306261924023912. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.