IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v380y2025ics0306261924024863.html
   My bibliography  Save this article

Short-term power prediction method of wind farm cluster based on deep spatiotemporal correlation mining

Author

Listed:
  • Wang, Da
  • Yang, Mao
  • Zhang, Wei
  • Ma, Chenglian
  • Su, Xin

Abstract

This paper proposed a short-term power prediction method based on spatiotemporal correlation mining for wind farm clusters. Firstly, a quantitative metric for spatial correlation is established, which takes into account both wind speed and direction. Based on this metric, a graph structure that includes virtual nodes is constructed to represent the spatial correlation between wind farms, with the virtual nodes adding extra useful information to the input data. Then, we employ the graph attention network to extract the spatial features of the wind farm cluster, and then construct a bidirectional recurrent residual network to extract temporal features, introducing multi-task learning algorithms to optimize the network output. Lastly, an evaluation index for the false prediction component is proposed, which assesses the erroneous predictions caused by the accumulation of positive and negative errors, offering a reference for the development of power generation plans. Experimental analysis was conducted using data from 21 wind farm clusters in China, and the short-term prediction accuracy achieved was 89.69 %, which validated the effectiveness of the proposed model.

Suggested Citation

  • Wang, Da & Yang, Mao & Zhang, Wei & Ma, Chenglian & Su, Xin, 2025. "Short-term power prediction method of wind farm cluster based on deep spatiotemporal correlation mining," Applied Energy, Elsevier, vol. 380(C).
  • Handle: RePEc:eee:appene:v:380:y:2025:i:c:s0306261924024863
    DOI: 10.1016/j.apenergy.2024.125102
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924024863
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.125102?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:380:y:2025:i:c:s0306261924024863. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.