IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v380y2025ics0306261924024760.html
   My bibliography  Save this article

Numerical modeling for analysis and improvement of hydrogen refueling process for heavy-duty vehicles

Author

Listed:
  • Fragiacomo, Petronilla
  • Martorelli, Michele
  • Genovese, Matteo

Abstract

This paper presents the development, validation, and application of a numerical model to simulate the process of refueling hydrogen-powerd heavy-duty vehicles, with a cascade hydrohen refueling station design. The model is implemented and validated using experimental data from SAE J2601. The link between the average pressure ramp (APRR) and flow rate, which is responsible for the dynamic evolution of the refueling process, was analyzed. Various simulations were conducted, with a vehicle tank of 230 L and nominal pressure of 35 MPa typical of tanks adopted in heavy-duty vehicles, varying the ambient temperature between 0 and 40 °C, the cooling temperature of the hydrogen by the system cooling between −40 and 0 °C and the APRR between 2 and 14 MPa/min. The study found that if the ambient temperature does not exceed 30 °C, rapid refueling can be carried out with not very low pre-cooling temperatures, e.g. -20 °C or − 10 °C, guaranteeing greater savings in station management. Cooling system thermal power has been investigated, through the analyses in several scenarios, with values as high as 38.2 kW under the most challenging conditions. For those conditions, it was shown that energy savings could reach as much as 90 %. Furthermore, the refueling process was analyzed taking into account SAE J2061/2 limitations and an update was proposed. An alternative strategy was proposed such that the settings allow a higher flow rate to be associated with a given standard pressure ramp. This approach was designed to ensure that the maximum allowable pressure downstream of the pressure control valve, as specified by the refueling protocol, is reached exactly at the end of the refueling process. It has been observed that the adoption of this strategy has significant advantages. In the case of refueling with higher APPR, refueling is about 20 s faster with a single tank, with limited increases in temperature and pressure within it.

Suggested Citation

  • Fragiacomo, Petronilla & Martorelli, Michele & Genovese, Matteo, 2025. "Numerical modeling for analysis and improvement of hydrogen refueling process for heavy-duty vehicles," Applied Energy, Elsevier, vol. 380(C).
  • Handle: RePEc:eee:appene:v:380:y:2025:i:c:s0306261924024760
    DOI: 10.1016/j.apenergy.2024.125092
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924024760
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.125092?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:380:y:2025:i:c:s0306261924024760. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.