Author
Listed:
- Scheffler, Florian
- Imdahl, Christoph
- Zellmer, Sabrina
- Herrmann, Christoph
Abstract
Converting renewable electricity via water electrolysis into green hydrogen and hydrogen-based products will shape a global trade in power-to-x (PtX) products. The European Union's renewable hydrogen import target of 10 million tonnes by 2030 reflects the urgent need for PtX imports by sea to early high-demand countries like Germany. This study evaluates the cost efficiency and greenhouse gas (GHG) emissions of four hydrogen carrier ship import options considering a reconversion to H2 at the import terminal for a final delivery to offtakers via a H2 pipeline network in 2030. This includes ammonia, a liquid organic hydrogen carrier (LOHC) system based on benzyltoluene (BT) and a novel CO2/e-methane and CO2/e-methanol cycle, where CO2 is captured at the reconversion plant and then shipped back to the PtX production site in a nearly closed carbon loop. The GHG emission accounting includes well-to-wake emissions of the marine fuels and direct emissions of the carbon capture plant. Two GW-scale case studies reveal the impact of a short and long-distance route from Tunisia and Australia to Germany, whereas the specific PtX carriers are either fuelled by its PtX cargo as a renewable marine fuel or by conventional heavy fuel oil (HFO). Ammonia outperforms the other PtX routes, as the total hydrogen supply cost range between 5.07 and 7.69 for Australia (low: NH3 HFO, high: LOHC HFO) and 4.78–6.21 € per kg H2 for Tunisia (low: NH3 HFO, high: CH4 HFO), respectively. The ammonia routes achieve thereby GHG intensities of 31 % and 86 % below the EU threshold of 3.4 kg CO2(e) per kg H2 for renewable hydrogen. LOHC though, unless switching to low-emission fuels, and the CO2/e-methanol cycle exceed the GHG threshold at shipping distances of 12,300 and 16,600 km. The hydrogen supply efficiencies vary between 57.9 and 78.8 %LHV (low: CH4 PtX-fuelled, high: NH3 HFO) with a PtX marine fuel consumption of up to 15 % LHV for the Australian methanol route, whereas high uncertainties remain for the ammonia and methanol reconversion plant efficiencies. The CO2 cyle enables a cost-efficient CO2 supply easing the near-term shortage of climate-neutral CO2 sources at the cost of high GHG emissions for long-distance routes.
Suggested Citation
Scheffler, Florian & Imdahl, Christoph & Zellmer, Sabrina & Herrmann, Christoph, 2025.
"Techno-economic and environmental assessment of renewable hydrogen import routes from overseas in 2030,"
Applied Energy, Elsevier, vol. 380(C).
Handle:
RePEc:eee:appene:v:380:y:2025:i:c:s0306261924024577
DOI: 10.1016/j.apenergy.2024.125073
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:380:y:2025:i:c:s0306261924024577. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.