IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v380y2025ics0306261924024449.html
   My bibliography  Save this article

A modular multi-step forecasting method for offshore wind power clusters

Author

Listed:
  • Fang, Lei
  • He, Bin
  • Yu, Sheng

Abstract

Offshore wind farm clusters, driven by economies of scale, are emerging as a prevalent trend. However, the intermittency and volatility of offshore wind power due to wind resource uncertainties pose significant challenges for forecasting. Existing research on offshore wind farm cluster power forecasting remains limited. This paper addresses this gap by proposing a modular and decoupled multi-step forecasting method for offshore wind farm clusters. The modular design enables adaptability to various forecasting scenarios, particularly with and without Numerical Weather Prediction (NWP) data, providing a flexible framework for future research and applications. The method leverages the spatiotemporal information of all wind farms within the cluster by first preprocessing the historical power output series using signal processing techniques, including Fast Fourier Transform (FFT) and Singular Value Decomposition (SVD), to decompose and denoise the data. Spatiotemporal feature extraction is then achieved through an Enhanced Long Short-Term Memory (LSTM) network, combining two-dimensional convolution and LSTM layers. Subsequently, incorporating NWP data, a Light Gradient Boosting Machine (LightGBM) model is employed for final forecasting. Finally, the proposed method is validated on a wind farm cluster in the eastern coastal region of China, demonstrating its effectiveness, accuracy, and generalizability at both individual wind farm and cluster levels.

Suggested Citation

  • Fang, Lei & He, Bin & Yu, Sheng, 2025. "A modular multi-step forecasting method for offshore wind power clusters," Applied Energy, Elsevier, vol. 380(C).
  • Handle: RePEc:eee:appene:v:380:y:2025:i:c:s0306261924024449
    DOI: 10.1016/j.apenergy.2024.125060
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924024449
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.125060?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:380:y:2025:i:c:s0306261924024449. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.