IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v380y2025ics0306261924023596.html
   My bibliography  Save this article

Bayesian hierarchical probabilistic forecasting of intraday electricity prices

Author

Listed:
  • Nickelsen, Daniel
  • Müller, Gernot

Abstract

We address the need for forecasting methodologies that handle large uncertainties in electricity prices for continuous intraday markets by incorporating parameter uncertainty and using a broad set of covariables. This study presents the first Bayesian forecasting of electricity prices traded on the German intraday market. Endogenous and exogenous covariables are handled via Orthogonal Matching Pursuit (OMP) and regularising priors. The target variable is the IDFull price index, with forecasts given as posterior predictive distributions. Validation uses the highly volatile 2022 electricity prices, which have seldom been studied. As a benchmark, we use all intraday transactions at the time of forecast to compute a live IDFull value. According to market efficiency, it should not be possible to improve on this last-price benchmark. However, we observe significant improvements in point measures and probability scores, including an average reduction of 5.9% in absolute errors and an average increase of 1.7% in accuracy when forecasting whether the IDFull exceeds the day-ahead price. Finally, we challenge the use of LASSO in electricity price forecasting, showing that OMP results in superior performance, specifically an average reduction of 22.7% in absolute error and 20.2% in the continuous ranked probability score.

Suggested Citation

  • Nickelsen, Daniel & Müller, Gernot, 2025. "Bayesian hierarchical probabilistic forecasting of intraday electricity prices," Applied Energy, Elsevier, vol. 380(C).
  • Handle: RePEc:eee:appene:v:380:y:2025:i:c:s0306261924023596
    DOI: 10.1016/j.apenergy.2024.124975
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924023596
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124975?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:380:y:2025:i:c:s0306261924023596. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.