Author
Listed:
- Li, Shiyao
- Zhou, Yue
- Wu, Jianzhong
- Pan, Yiqun
- Huang, Zhizhong
- Zhou, Nan
Abstract
As climate change has become a global concern, the decarbonization of energy systems has become a prominent solution for CO2 emission reduction. The recent emergence of multi-energy hub systems (MEHs), characterized by interconnected energy hubs (EHs) and facilitated by energy sharing, presents a promising solution for seamlessly integrating a significant share of renewable energy sources (RESs) and flexibility among EHs. Faced with the intricate interplay and uncertainty of future energy markets, an extensive digital twin (EXDT) is proposed to perform predictive testing and evaluate the performance of MESs. This EXDT provides energy system operators with insights into the coordinated behavior of interconnected EHs under various future scenarios, thus contributing to smarter decision-making processes. Specifically, an array of scenarios including different decision-making strategies and P2P energy sharing strategies were considered. For each of these scenarios,"what-if" tests were conducted using a multi-agent reinforcement learning (MARL)-based method to model the stochastic decision-making process of EHs belonging to different stakeholders with access to local information. Uncertainties during operation can be mitigated using Markov Game (MG) by capturing knowledge from historical energy data. Subsequently, the economic and technical performance were evaluated using multidimensional evaluation indexes. The proposed MARL-based EXDT was applied to a representative 4-EH multi-energy system in China. Simulation results indicate that P2P energy sharing facilitates the local consumption of renewable energy, providing additional financial benefits and self-sufficiency to each EH and offering peak shaving to the upstream grid. Additionally, system performance under various decision-making and P2P sharing strategies was tested and evaluated to identify the impact of these strategies on system operation.
Suggested Citation
Li, Shiyao & Zhou, Yue & Wu, Jianzhong & Pan, Yiqun & Huang, Zhizhong & Zhou, Nan, 2025.
"A digital twin of multiple energy hub systems with peer-to-peer energy sharing,"
Applied Energy, Elsevier, vol. 380(C).
Handle:
RePEc:eee:appene:v:380:y:2025:i:c:s0306261924022918
DOI: 10.1016/j.apenergy.2024.124908
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:380:y:2025:i:c:s0306261924022918. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.