IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v380y2025ics0306261924021767.html
   My bibliography  Save this article

Graph neural networks for power grid operational risk assessment under evolving unit commitment

Author

Listed:
  • Zhang, Yadong
  • Karve, Pranav M.
  • Mahadevan, Sankaran

Abstract

This article investigates the ability of graph neural networks (GNNs) to identify risky conditions in a power grid over the subsequent few hours, without explicit, high-resolution information regarding future generator on/off status or power dispatch decisions. The GNNs are trained using supervised learning to predict the power grid’s aggregated bus-level (either zonal or system-level) or individual branch-level state under different power supply and demand conditions. The variability of the stochastic grid variables (wind/solar generation and load demand), and their statistical correlations, are considered while generating the inputs for the training data. The outputs in the training data include system-level, zonal and transmission line-level quantities of interest (QoIs). The ground truth of QoIs are obtained by numerically solving deterministic optimization problems (e.g., security-constrained unit commitment) with the same inputs. The GNN predictions are used to conduct hours-ahead, sampling-based reliability and risk assessment w.r.t. zonal and system-level (load shedding) as well as branch-level (overloading) failure events. The proposed methodology is demonstrated for three synthetic grids with sizes ranging from 118 to 2848 buses. Our results demonstrate that GNNs are capable of providing fast and accurate prediction of QoIs and can be good proxies for computationally expensive optimization algorithms. The excellent accuracy of GNN-based reliability and risk assessment suggests that GNN models can substantially improve situational awareness by enabling quick, high-resolution reliability and risk estimation.

Suggested Citation

  • Zhang, Yadong & Karve, Pranav M. & Mahadevan, Sankaran, 2025. "Graph neural networks for power grid operational risk assessment under evolving unit commitment," Applied Energy, Elsevier, vol. 380(C).
  • Handle: RePEc:eee:appene:v:380:y:2025:i:c:s0306261924021767
    DOI: 10.1016/j.apenergy.2024.124793
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924021767
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124793?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:380:y:2025:i:c:s0306261924021767. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.