Author
Listed:
- Ficenec, Karen
- Singer, Mark
- Hodge, Cabell
Abstract
Utilizing fueling transactions from internal combustion engine vehicles (ICEVs), the authors estimated how frequently midday public charging would be required for U.S. federal fleet battery electric vehicles (BEVs). Fueling transaction summary statistics are more widely available than trip-level telematics data, making this methodology more accessible and transferable to other researchers and fleet managers considering BEV replacements. For example, readers can easily apply a linear model using only the count of back-to-back fueling events at gas stations over 57 straight-line miles apart to predict days exceeding range. This linear regression predicted binned days exceeding 250 miles at 80 % accuracy on a hold-out test set from the same fleet as the training data and 66 % accuracy on a new fleet displaying different driving behaviors. The authors additionally provide linear equations for days exceeding 200 and 300 miles as alternative range estimates to account for differences in BEV range and temperature impacts. Beyond the single-feature linear models which readers can apply, the authors tuned and trained other machine learning models on a variety of fueling transaction statistics including consecutive transaction distances, transaction distance from garage, estimated miles traveled from fuel economy and fuel quantity, and transaction periodicity. Utilizing a subset of 1678 light-duty federal fleet vehicles which contained daily vehicle miles traveled (VMT) in addition to fueling statistics, the authors determined which fueling transaction statistics were most relevant in predicting driving days exceeding 250 miles (an approximation of BEV rated driving range). In support of the U.S. federal fleet transition to zero-emission vehicles (ZEVs), the authors used these statistics and machine learning models to predict the frequency of BEV midday charging. After training models on the subset with VMT, the authors predicted days exceeding rated range for 112,902 light-duty vehicles operating in similar circumstances in the federal fleet using a Support Vector Regressor (SVR). They then used the projections as part of the ZEV Planning and Charging (ZPAC) tool to identify optimal candidates for BEVs for the federal fleet. An anonymized version of ZPAC is included in the supplementary materials.
Suggested Citation
Ficenec, Karen & Singer, Mark & Hodge, Cabell, 2025.
"Predicting U.S. federal fleet electric vehicle charging patterns using internal combustion engine vehicle fueling transaction statistics,"
Applied Energy, Elsevier, vol. 378(PA).
Handle:
RePEc:eee:appene:v:378:y:2025:i:pa:s0306261924021615
DOI: 10.1016/j.apenergy.2024.124778
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:378:y:2025:i:pa:s0306261924021615. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.