IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v374y2024ics0306261924014089.html
   My bibliography  Save this article

NNEoS : Neural network-based thermodynamically consistent equation of state for fast and accurate flash calculations

Author

Listed:
  • Qu, Jingang
  • Yousef, Soleiman
  • Faney, Thibault
  • de Hemptinne, Jean-Charles
  • Gallinari, Patrick

Abstract

Equations of state (EOS) correlate thermodynamic properties and are essential for flash calculations. However, solving for an EOS can be time-consuming, and EOS do not precisely represent physical reality, causing the deviation of flash results from phase equilibrium data. In this work, we propose a neural network-based EOS (NNEoS) inherently satisfying thermodynamic consistency. NNEoS first predicts the residual Gibbs energy and then derives other thermodynamic properties through differentiation. NNEoS can be trained using an analytical EOS and then serve as a reliable, computationally efficient substitute. NNEoS can also be fine-tuned with experimental data to better match flash results to experimental data. We evaluate the performance of NNEoS against analytical EOS on three case studies, including binary and multicomponent mixtures with and without cross-association. The results show that NNEoS achieves significantly faster flash calculations via GPU-based parallel computing and offers superior predictive accuracy after fine-tuning compared to analytical EOS.

Suggested Citation

  • Qu, Jingang & Yousef, Soleiman & Faney, Thibault & de Hemptinne, Jean-Charles & Gallinari, Patrick, 2024. "NNEoS : Neural network-based thermodynamically consistent equation of state for fast and accurate flash calculations," Applied Energy, Elsevier, vol. 374(C).
  • Handle: RePEc:eee:appene:v:374:y:2024:i:c:s0306261924014089
    DOI: 10.1016/j.apenergy.2024.124025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924014089
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Yuanbin & Hong, Weixiang & Cao, Bingyang, 2019. "Machine learning for predicting thermodynamic properties of pure fluids and their mixtures," Energy, Elsevier, vol. 188(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Yichuan & Feng, Yanhui & Qiu, Lin & Tang, Dawei, 2024. "Data-driven approach augmented by attention mechanism in critical and boiling thermophysical properties prediction of fluorine/chlorine-based refrigerants," Energy, Elsevier, vol. 306(C).
    2. Gong, Yifei & Ma, Xiao & Luo, Kai Hong & Xu, Hongming & Shuai, Shijin, 2022. "A molecular dynamics study of evaporation of multicomponent stationary and moving fuel droplets in multicomponent ambient gases under supercritical conditions," Energy, Elsevier, vol. 258(C).
    3. Liu, Shanke & Yang, Yan & Yu, Lijun & Cao, Yu & Liu, Xinyi & Yao, Anqi & Cao, Yaping, 2023. "Self-heating optimization of integrated system of supercritical water gasification of biomass for power generation using artificial neural network combined with process simulation," Energy, Elsevier, vol. 272(C).
    4. Navarkar, Abhishek & Hasti, Veeraraghava Raju & Deneke, Elihu & Gore, Jay P., 2020. "A data-driven model for thermodynamic properties of a steam generator under cycling operation," Energy, Elsevier, vol. 211(C).
    5. Noushabadi, Abolfazl Sajadi & Lay, Ebrahim Nemati & Dashti, Amir & Mohammadi, Amir H. & Chofreh, Abdoulmohammad Gholamzadeh & Goni, Feybi Ariani & Klemeš, Jiří Jaromír, 2023. "Insights into modelling and evaluation of thermodynamic and transport properties of refrigerants using machine-learning methods," Energy, Elsevier, vol. 262(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:374:y:2024:i:c:s0306261924014089. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.