IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v371y2024ics0306261924010110.html
   My bibliography  Save this article

Integrated energy and ancillary services optimized management and risk analysis within a pay-as-bid market

Author

Listed:
  • Vannoni, Alberto
  • Sorce, Alessandro

Abstract

In liberalized electricity markets, trading energy between generators and consumers occurs primarily on the Day-Ahead Market (DAM) one day in advance. However, the scheduled programs may not comply with grid requirements or real-time conditions. To ensure grid stability and sufficient reserves, system operators procure resources on the Ancillary Services Market (ASM). With the increasing share of renewable energy sources, many programmable generators are shifting their business model, from generating energy at base load to providing grid services. In this context, a DAM-based traditional approach to dispatch scheduling, widely adopted by existing techno-economics analysis, may result significantly suboptimal. This paper presents a novel model for dispatch optimization maximizing profits simultaneously on both the DAM and ASM, utilizing a mixed integer linear programming (MILP) formulation and a machine learning algorithm considering a pay-as-bid pricing system and predicting the probability of offer acceptance based on historical data. The proposed framework is modular and flexible, allowing for separate use of the MILP dispatch optimizer and the machine learning offer acceptance prediction model. A risk propensity factor is defined and the impact on the optimal bidding strategy, the expected profits, and their variability, is studied. A Montecarlo approach is used to evaluate the profits probability density function. The performance obtained (i.e. 20 min to optimize one week of operation of a Combined Cycle Gas Turbine) allows in applying the proposed methodologies for both long term energy system planning and daily production offer scheduling.

Suggested Citation

  • Vannoni, Alberto & Sorce, Alessandro, 2024. "Integrated energy and ancillary services optimized management and risk analysis within a pay-as-bid market," Applied Energy, Elsevier, vol. 371(C).
  • Handle: RePEc:eee:appene:v:371:y:2024:i:c:s0306261924010110
    DOI: 10.1016/j.apenergy.2024.123628
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924010110
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123628?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiao, Dongliang & Lin, Zhenjia & Chen, Haoyong & Hua, Weiqi & Yan, Jinyue, 2024. "Windfall profit-aware stochastic scheduling strategy for industrial virtual power plant with integrated risk-seeking/averse preferences," Applied Energy, Elsevier, vol. 357(C).
    2. Jan Marc Schwidtal & Marco Agostini & Fabio Bignucolo & Massimiliano Coppo & Patrizia Garengo & Arturo Lorenzoni, 2021. "Integration of Flexibility from Distributed Energy Resources: Mapping the Innovative Italian Pilot Project UVAM," Energies, MDPI, vol. 14(7), pages 1-29, March.
    3. Kuttner, Leopold, 2022. "Integrated scheduling and bidding of power and reserve of energy resource aggregators with storage plants," Applied Energy, Elsevier, vol. 321(C).
    4. Nosratabadi, Seyyed Mostafa & Hooshmand, Rahmat-Allah & Gholipour, Eskandar, 2016. "Stochastic profit-based scheduling of industrial virtual power plant using the best demand response strategy," Applied Energy, Elsevier, vol. 164(C), pages 590-606.
    5. Nosratabadi, Seyyed Mostafa & Hooshmand, Rahmat-Allah & Gholipour, Eskandar, 2017. "A comprehensive review on microgrid and virtual power plant concepts employed for distributed energy resources scheduling in power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 341-363.
    6. Wang, Qi & Zhang, Chunyu & Ding, Yi & Xydis, George & Wang, Jianhui & Østergaard, Jacob, 2015. "Review of real-time electricity markets for integrating Distributed Energy Resources and Demand Response," Applied Energy, Elsevier, vol. 138(C), pages 695-706.
    7. Fang, Tingting & Lahdelma, Risto, 2016. "Optimization of combined heat and power production with heat storage based on sliding time window method," Applied Energy, Elsevier, vol. 162(C), pages 723-732.
    8. Zhou, Yizhou & Wei, Zhinong & Sun, Guoqiang & Cheung, Kwok W. & Zang, Haixiang & Chen, Sheng, 2018. "A robust optimization approach for integrated community energy system in energy and ancillary service markets," Energy, Elsevier, vol. 148(C), pages 1-15.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jiawei & You, Shi & Zong, Yi & Træholt, Chresten & Dong, Zhao Yang & Zhou, You, 2019. "Flexibility of combined heat and power plants: A review of technologies and operation strategies," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    2. Yu, Songyuan & Fang, Fang & Liu, Yajuan & Liu, Jizhen, 2019. "Uncertainties of virtual power plant: Problems and countermeasures," Applied Energy, Elsevier, vol. 239(C), pages 454-470.
    3. Kohlhepp, Peter & Harb, Hassan & Wolisz, Henryk & Waczowicz, Simon & Müller, Dirk & Hagenmeyer, Veit, 2019. "Large-scale grid integration of residential thermal energy storages as demand-side flexibility resource: A review of international field studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 527-547.
    4. Mohammad Mohammadi Roozbehani & Ehsan Heydarian-Forushani & Saeed Hasanzadeh & Seifeddine Ben Elghali, 2022. "Virtual Power Plant Operational Strategies: Models, Markets, Optimization, Challenges, and Opportunities," Sustainability, MDPI, vol. 14(19), pages 1-23, September.
    5. Naval, Natalia & Yusta, Jose M., 2021. "Virtual power plant models and electricity markets - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    6. Sedzro, Kwami Senam A. & Kishore, Shalinee & Lamadrid, Alberto J. & Zuluaga, Luis F., 2018. "Stochastic risk-sensitive market integration for renewable energy: Application to ocean wave power plants," Applied Energy, Elsevier, vol. 229(C), pages 474-481.
    7. Natalia Naval & Jose M. Yusta, 2020. "Water-Energy Management for Demand Charges and Energy Cost Optimization of a Pumping Stations System under a Renewable Virtual Power Plant Model," Energies, MDPI, vol. 13(11), pages 1-21, June.
    8. Xie, Chunping & Hong, Yan & Ding, Yulong & Li, Yongliang & Radcliffe, Jonathan, 2018. "An economic feasibility assessment of decoupled energy storage in the UK: With liquid air energy storage as a case study," Applied Energy, Elsevier, vol. 225(C), pages 244-257.
    9. Wang, Shuangyuan & Li, Ran & Evans, Adrian & Li, Furong, 2020. "Regional nonintrusive load monitoring for low voltage substations and distributed energy resources," Applied Energy, Elsevier, vol. 260(C).
    10. Ramos, Dorel Soares & Del Carpio Huayllas, Tesoro Elena & Morozowski Filho, Marciano & Tolmasquim, Mauricio Tiomno, 2020. "New commercial arrangements and business models in electricity distribution systems: The case of Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    11. Karim L. Anaya & Michael G. Pollitt, 2021. "How to Procure Flexibility Services within the Electricity Distribution System: Lessons from an International Review of Innovation Projects," Energies, MDPI, vol. 14(15), pages 1-26, July.
    12. Wang, Yongli & Wang, Yudong & Huang, Yujing & Yang, Jiale & Ma, Yuze & Yu, Haiyang & Zeng, Ming & Zhang, Fuwei & Zhang, Yanfu, 2019. "Operation optimization of regional integrated energy system based on the modeling of electricity-thermal-natural gas network," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    13. Emrani-Rahaghi, Pouria & Hashemi-Dezaki, Hamed & Ketabi, Abbas, 2023. "Efficient voltage control of low voltage distribution networks using integrated optimized energy management of networked residential multi-energy microgrids," Applied Energy, Elsevier, vol. 349(C).
    14. Putna, Ondřej & Janošťák, František & Šomplák, Radovan & Pavlas, Martin, 2018. "Demand modelling in district heating systems within the conceptual design of a waste-to-energy plant," Energy, Elsevier, vol. 163(C), pages 1125-1139.
    15. Andoni, Merlinda & Robu, Valentin & Flynn, David & Abram, Simone & Geach, Dale & Jenkins, David & McCallum, Peter & Peacock, Andrew, 2019. "Blockchain technology in the energy sector: A systematic review of challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 143-174.
    16. Seong-Hyeon Cha & Sun-Hyeok Kwak & Woong Ko, 2023. "A Robust Optimization Model of Aggregated Resources Considering Serving Ratio for Providing Reserve Power in the Joint Electricity Market," Energies, MDPI, vol. 16(20), pages 1-27, October.
    17. Meyabadi, A. Fattahi & Deihimi, M.H., 2017. "A review of demand-side management: Reconsidering theoretical framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 367-379.
    18. Doumen, Sjoerd C. & Nguyen, Phuong & Kok, Koen, 2022. "Challenges for large-scale Local Electricity Market implementation reviewed from the stakeholder perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    19. Reza Nadimi & Masahito Takahashi & Koji Tokimatsu & Mika Goto, 2024. "The Reliability and Profitability of Virtual Power Plant with Short-Term Power Market Trading and Non-Spinning Reserve Diesel Generator," Energies, MDPI, vol. 17(9), pages 1-19, April.
    20. Eissa, M.M., 2018. "First time real time incentive demand response program in smart grid with “i-Energy” management system with different resources," Applied Energy, Elsevier, vol. 212(C), pages 607-621.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:371:y:2024:i:c:s0306261924010110. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.