IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v365y2024ics0306261924006652.html
   My bibliography  Save this article

Optimal and distributed energy management in interconnected energy hubs

Author

Listed:
  • Azimi, Maryam
  • Salami, Abolfazl
  • Javadi, Mohammad S.
  • Catalão, João P.S.

Abstract

Recently, multi-carrier energy systems (MCESs) have been rapidly developed as flexible multi-generation systems aiming to satisfy load demands by purchasing, converting, and storing different energy carriers. This study specifically focuses on the optimal and robust large-scale coordination of interconnected energy hubs (IEHs) in an iterative consensus-based procedure considering distribution network losses. Furthermore, a new robust-based hybrid IGDT/consensus algorithm is introduced to achieve risk-averse optimal energy management in IEHs under uncertainty. The fast convergence, needless to collect the total information from all hubs, minimal computational burden, and more robust communication system are the most important features of the proposed distributed consensus algorithm in this study. The effectiveness of the proposed consensus algorithm is verified by simulation results considering various energy trading structures in IEHs at different scales. The obtained results highlight the scalability capability of the proposed method. Regarding an IEHS of 30 energy hubs, the computation burden is lightened by 0.53 (s) and 0.1917 (s), respectively with and without uncertainty. Considering distribution network losses, the total purchasing costs can be increased by 8%. The simulation results also reveal an increase of 11% in the total power trading under the uncertainty.

Suggested Citation

  • Azimi, Maryam & Salami, Abolfazl & Javadi, Mohammad S. & Catalão, João P.S., 2024. "Optimal and distributed energy management in interconnected energy hubs," Applied Energy, Elsevier, vol. 365(C).
  • Handle: RePEc:eee:appene:v:365:y:2024:i:c:s0306261924006652
    DOI: 10.1016/j.apenergy.2024.123282
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924006652
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123282?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Esmaeil Valipour & Ramin Nourollahi & Kamran Taghizad-Tavana & Sayyad Nojavan & As’ad Alizadeh, 2022. "Risk Assessment of Industrial Energy Hubs and Peer-to-Peer Heat and Power Transaction in the Presence of Electric Vehicles," Energies, MDPI, vol. 15(23), pages 1-24, November.
    2. Zhang, XiaoWei & Yu, Xiaoping & Ye, Xinping & Pirouzi, Sasan, 2023. "Economic energy managementof networked flexi-renewable energy hubs according to uncertainty modeling by the unscented transformation method," Energy, Elsevier, vol. 278(PB).
    3. Ahmadi, Seyed Ehsan & Sadeghi, Delnia & Marzband, Mousa & Abusorrah, Abdullah & Sedraoui, Khaled, 2022. "Decentralized bi-level stochastic optimization approach for multi-agent multi-energy networked micro-grids with multi-energy storage technologies," Energy, Elsevier, vol. 245(C).
    4. Lin, Wei & Jin, Xiaolong & Jia, Hongjie & Mu, Yunfei & Xu, Tao & Xu, Xiandong & Yu, Xiaodan, 2021. "Decentralized optimal scheduling for integrated community energy system via consensus-based alternating direction method of multipliers," Applied Energy, Elsevier, vol. 302(C).
    5. Javadi, Mohammad Sadegh & Esmaeel Nezhad, Ali & Jordehi, Ahmad Rezaee & Gough, Matthew & Santos, Sérgio F. & Catalão, João P.S., 2022. "Transactive energy framework in multi-carrier energy hubs: A fully decentralized model," Energy, Elsevier, vol. 238(PB).
    6. Mu, Chenlu & Ding, Tao & Qu, Ming & Zhou, Quan & Li, Fangxing & Shahidehpour, Mohammad, 2020. "Decentralized optimization operation for the multiple integrated energy systems with energy cascade utilization," Applied Energy, Elsevier, vol. 280(C).
    7. Yining Zhang & Yubin He & Mingyu Yan & Chuangxin Guo & Yi Ding, 2018. "Linearized Stochastic Scheduling of Interconnected Energy Hubs Considering Integrated Demand Response and Wind Uncertainty," Energies, MDPI, vol. 11(9), pages 1-23, September.
    8. Wei, Zhenbo & Wei, Pingan & Chen, Chiyao & Gao, Hongjun & Luo, Zihang & Xiang, Yue, 2023. "Two-stage stochastic decentralized low-carbon economic dispatch of integrated electricity-gas networks," Energy, Elsevier, vol. 282(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Xu & Ma, Zhongjing & Zou, Suli & Zhang, Jinhui, 2022. "Consensus-based distributed economic dispatch for Multi Micro Energy Grid systems under coupled carbon emissions," Applied Energy, Elsevier, vol. 324(C).
    2. Alizadeh, Ali & Kamwa, Innocent & Moeini, Ali & Mohseni-Bonab, Seyed Masoud, 2023. "Energy management in microgrids using transactive energy control concept under high penetration of Renewables; A survey and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    3. Ma, Huan & Sun, Qinghan & Chen, Qun & Zhao, Tian & He, Kelun, 2023. "Exergy-based flexibility cost indicator and spatio-temporal coordination principle of distributed multi-energy systems," Energy, Elsevier, vol. 267(C).
    4. Li, Yang & Wang, Bin & Yang, Zhen & Li, Jiazheng & Chen, Chen, 2022. "Hierarchical stochastic scheduling of multi-community integrated energy systems in uncertain environments via Stackelberg game," Applied Energy, Elsevier, vol. 308(C).
    5. Guoqiang Sun & Wenxue Wang & Yi Wu & Wei Hu & Zijun Yang & Zhinong Wei & Haixiang Zang & Sheng Chen, 2019. "A Nonlinear Analytical Algorithm for Predicting the Probabilistic Mass Flow of a Radial District Heating Network," Energies, MDPI, vol. 12(7), pages 1-20, March.
    6. Hua, Zhihao & Li, Jiayong & Zhou, Bin & Or, Siu Wing & Chan, Ka Wing & Meng, Yunfan, 2022. "Game-theoretic multi-energy trading framework for strategic biogas-solar renewable energy provider with heterogeneous consumers," Energy, Elsevier, vol. 260(C).
    7. Mansouri, S.A. & Ahmarinejad, A. & Nematbakhsh, E. & Javadi, M.S. & Esmaeel Nezhad, A. & Catalão, J.P.S., 2022. "A sustainable framework for multi-microgrids energy management in automated distribution network by considering smart homes and high penetration of renewable energy resources," Energy, Elsevier, vol. 245(C).
    8. Mohseni, Soheil & Brent, Alan C. & Kelly, Scott & Browne, Will N., 2022. "Demand response-integrated investment and operational planning of renewable and sustainable energy systems considering forecast uncertainties: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    9. Menghwar, Mohan & Yan, Jie & Chi, Yongning & Asim Amin, M. & Liu, Yongqian, 2024. "A market-based real-time algorithm for congestion alleviation incorporating EV demand response in active distribution networks," Applied Energy, Elsevier, vol. 356(C).
    10. Shen, Haotian & Zhang, Hualiang & Xu, Yujie & Chen, Haisheng & Zhang, Zhilai & Li, Wenkai & Su, Xu & Xu, Yalin & Zhu, Yilin, 2024. "Two stage robust economic dispatching of microgrid considering uncertainty of wind, solar and electricity load along with carbon emission predicted by neural network model," Energy, Elsevier, vol. 300(C).
    11. Ryan, Erich & McDaniel, Benjamin & Kosanovic, Dragoljub, 2022. "Application of thermal energy storage with electrified heating and cooling in a cold climate," Applied Energy, Elsevier, vol. 328(C).
    12. Duan, Pengfei & Zhao, Bingxu & Zhang, Xinghui & Fen, Mengdan, 2023. "A day-ahead optimal operation strategy for integrated energy systems in multi-public buildings based on cooperative game," Energy, Elsevier, vol. 275(C).
    13. Chengyu Zeng & Yuechun Jiang & Yuqing Liu & Zuoyun Tan & Zhongnan He & Shuhong Wu, 2019. "Optimal Dispatch of Integrated Energy System Considering Energy Hub Technology and Multi-Agent Interest Balance," Energies, MDPI, vol. 12(16), pages 1-17, August.
    14. Chang, Weiguang & Yang, Qiang, 2023. "Low carbon oriented collaborative energy management framework for multi-microgrid aggregated virtual power plant considering electricity trading," Applied Energy, Elsevier, vol. 351(C).
    15. Meng, Lingzhuochao & Yang, Xiyun & Zhu, Jiang & Wang, Xinzhe & Meng, Xin, 2024. "Network partition and distributed voltage coordination control strategy of active distribution network system considering photovoltaic uncertainty," Applied Energy, Elsevier, vol. 362(C).
    16. Wang, Yongli & Liu, Zhen & Cai, Chengcong & Xue, Lu & Ma, Yang & Shen, Hekun & Chen, Xin & Liu, Lin, 2022. "Research on the optimization method of integrated energy system operation with multi-subject game," Energy, Elsevier, vol. 245(C).
    17. Xuejun Li & Minghua Jiang & Deyu Cai & Wenqin Song & Yalu Sun, 2024. "A Hybrid Forecasting Model for Electricity Demand in Sustainable Power Systems Based on Support Vector Machine," Energies, MDPI, vol. 17(17), pages 1-16, September.
    18. Schmid, Fabian & Behrendt, Frank, 2023. "Genetic sizing optimization of residential multi-carrier energy systems: The aim of energy autarky and its cost," Energy, Elsevier, vol. 262(PA).
    19. Fan, Wei & Tan, Qingbo & Zhang, Amin & Ju, Liwei & Wang, Yuwei & Yin, Zhe & Li, Xudong, 2023. "A Bi-level optimization model of integrated energy system considering wind power uncertainty," Renewable Energy, Elsevier, vol. 202(C), pages 973-991.
    20. Zhong, Xiaoqing & Zhong, Weifeng & Liu, Yi & Yang, Chao & Xie, Shengli, 2023. "A communication-efficient coalition graph game-based framework for electricity and carbon trading in networked energy hubs," Applied Energy, Elsevier, vol. 329(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:365:y:2024:i:c:s0306261924006652. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.