IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v365y2024ics0306261924006652.html
   My bibliography  Save this article

Optimal and distributed energy management in interconnected energy hubs

Author

Listed:
  • Azimi, Maryam
  • Salami, Abolfazl
  • Javadi, Mohammad S.
  • Catalão, João P.S.

Abstract

Recently, multi-carrier energy systems (MCESs) have been rapidly developed as flexible multi-generation systems aiming to satisfy load demands by purchasing, converting, and storing different energy carriers. This study specifically focuses on the optimal and robust large-scale coordination of interconnected energy hubs (IEHs) in an iterative consensus-based procedure considering distribution network losses. Furthermore, a new robust-based hybrid IGDT/consensus algorithm is introduced to achieve risk-averse optimal energy management in IEHs under uncertainty. The fast convergence, needless to collect the total information from all hubs, minimal computational burden, and more robust communication system are the most important features of the proposed distributed consensus algorithm in this study. The effectiveness of the proposed consensus algorithm is verified by simulation results considering various energy trading structures in IEHs at different scales. The obtained results highlight the scalability capability of the proposed method. Regarding an IEHS of 30 energy hubs, the computation burden is lightened by 0.53 (s) and 0.1917 (s), respectively with and without uncertainty. Considering distribution network losses, the total purchasing costs can be increased by 8%. The simulation results also reveal an increase of 11% in the total power trading under the uncertainty.

Suggested Citation

  • Azimi, Maryam & Salami, Abolfazl & Javadi, Mohammad S. & Catalão, João P.S., 2024. "Optimal and distributed energy management in interconnected energy hubs," Applied Energy, Elsevier, vol. 365(C).
  • Handle: RePEc:eee:appene:v:365:y:2024:i:c:s0306261924006652
    DOI: 10.1016/j.apenergy.2024.123282
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924006652
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123282?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, XiaoWei & Yu, Xiaoping & Ye, Xinping & Pirouzi, Sasan, 2023. "Economic energy managementof networked flexi-renewable energy hubs according to uncertainty modeling by the unscented transformation method," Energy, Elsevier, vol. 278(PB).
    2. Ahmadi, Seyed Ehsan & Sadeghi, Delnia & Marzband, Mousa & Abusorrah, Abdullah & Sedraoui, Khaled, 2022. "Decentralized bi-level stochastic optimization approach for multi-agent multi-energy networked micro-grids with multi-energy storage technologies," Energy, Elsevier, vol. 245(C).
    3. Lin, Wei & Jin, Xiaolong & Jia, Hongjie & Mu, Yunfei & Xu, Tao & Xu, Xiandong & Yu, Xiaodan, 2021. "Decentralized optimal scheduling for integrated community energy system via consensus-based alternating direction method of multipliers," Applied Energy, Elsevier, vol. 302(C).
    4. Javadi, Mohammad Sadegh & Esmaeel Nezhad, Ali & Jordehi, Ahmad Rezaee & Gough, Matthew & Santos, Sérgio F. & Catalão, João P.S., 2022. "Transactive energy framework in multi-carrier energy hubs: A fully decentralized model," Energy, Elsevier, vol. 238(PB).
    5. Yining Zhang & Yubin He & Mingyu Yan & Chuangxin Guo & Yi Ding, 2018. "Linearized Stochastic Scheduling of Interconnected Energy Hubs Considering Integrated Demand Response and Wind Uncertainty," Energies, MDPI, vol. 11(9), pages 1-23, September.
    6. Wei, Zhenbo & Wei, Pingan & Chen, Chiyao & Gao, Hongjun & Luo, Zihang & Xiang, Yue, 2023. "Two-stage stochastic decentralized low-carbon economic dispatch of integrated electricity-gas networks," Energy, Elsevier, vol. 282(C).
    7. Esmaeil Valipour & Ramin Nourollahi & Kamran Taghizad-Tavana & Sayyad Nojavan & As’ad Alizadeh, 2022. "Risk Assessment of Industrial Energy Hubs and Peer-to-Peer Heat and Power Transaction in the Presence of Electric Vehicles," Energies, MDPI, vol. 15(23), pages 1-24, November.
    8. Mu, Chenlu & Ding, Tao & Qu, Ming & Zhou, Quan & Li, Fangxing & Shahidehpour, Mohammad, 2020. "Decentralized optimization operation for the multiple integrated energy systems with energy cascade utilization," Applied Energy, Elsevier, vol. 280(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ji, Zhengxiong & Tian, Jianyan & Liu, Shuwei & Yang, Lizhi & Dai, Yuanyuan & Banerjee, Amit, 2025. "Optimal scheduling of park-level integrated energy system considering multiple uncertainties: A comprehensive risk strategy-information gap decision theory method," Applied Energy, Elsevier, vol. 377(PD).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Xu & Ma, Zhongjing & Zou, Suli & Zhang, Jinhui, 2022. "Consensus-based distributed economic dispatch for Multi Micro Energy Grid systems under coupled carbon emissions," Applied Energy, Elsevier, vol. 324(C).
    2. Alizadeh, Ali & Kamwa, Innocent & Moeini, Ali & Mohseni-Bonab, Seyed Masoud, 2023. "Energy management in microgrids using transactive energy control concept under high penetration of Renewables; A survey and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    3. Zhao, Peiyao & Li, Zhengshuo & Bai, Xiang & Su, Jia & Chang, Xinyue, 2024. "Stochastic real-time dispatch considering AGC and electric-gas dynamic interaction: Fine-grained modeling and noniterative decentralized solutions," Applied Energy, Elsevier, vol. 375(C).
    4. Dong, Lei & Sun, Shiting & Zhang, Shiming & Zhang, Tao & Pu, Tianjiao, 2024. "Distributed restoration for integrated electricity-gas-heating energy systems with an iterative loop scheme," Energy, Elsevier, vol. 304(C).
    5. Zhang, Haoran & Li, Ruixiong & Cai, Xingrui & Zheng, Chaoyue & Liu, Laibao & Liu, Maodian & Zhang, Qianru & Lin, Huiming & Chen, Long & Wang, Xuejun, 2022. "Do electricity flows hamper regional economic–environmental equity?," Applied Energy, Elsevier, vol. 326(C).
    6. Ma, Huan & Sun, Qinghan & Chen, Qun & Zhao, Tian & He, Kelun, 2023. "Exergy-based flexibility cost indicator and spatio-temporal coordination principle of distributed multi-energy systems," Energy, Elsevier, vol. 267(C).
    7. Bu, Yuntao & Yu, Hao & Ji, Haoran & Song, Guanyu & Xu, Jing & Li, Juan & Zhao, Jinli & Li, Peng, 2024. "Hybrid data-driven operation method for demand response of community integrated energy systems utilizing virtual and physical energy storage," Applied Energy, Elsevier, vol. 366(C).
    8. Li, Yang & Wang, Bin & Yang, Zhen & Li, Jiazheng & Chen, Chen, 2022. "Hierarchical stochastic scheduling of multi-community integrated energy systems in uncertain environments via Stackelberg game," Applied Energy, Elsevier, vol. 308(C).
    9. Guoqiang Sun & Wenxue Wang & Yi Wu & Wei Hu & Zijun Yang & Zhinong Wei & Haixiang Zang & Sheng Chen, 2019. "A Nonlinear Analytical Algorithm for Predicting the Probabilistic Mass Flow of a Radial District Heating Network," Energies, MDPI, vol. 12(7), pages 1-20, March.
    10. Hao, Junhong & Feng, Xiaolong & Chen, Xiangru & Jin, Xilin & Wang, Xingce & Hao, Tong & Hong, Feng & Du, Xiaoze, 2024. "Optimal scheduling of active distribution network considering symmetric heat and power source-load spatial-temporal characteristics," Applied Energy, Elsevier, vol. 373(C).
    11. Han, Ouzhu & Ding, Tao & Zhang, Xiaosheng & Mu, Chenggang & He, Xinran & Zhang, Hongji & Jia, Wenhao & Ma, Zhoujun, 2023. "A shared energy storage business model for data center clusters considering renewable energy uncertainties," Renewable Energy, Elsevier, vol. 202(C), pages 1273-1290.
    12. Mehdinejad, Mehdi & Shayanfar, Heidarali & Mohammadi-Ivatloo, Behnam, 2022. "Decentralized blockchain-based peer-to-peer energy-backed token trading for active prosumers," Energy, Elsevier, vol. 244(PA).
    13. Artis, Reza & Shivaie, Mojtaba & Weinsier, Philip D., 2024. "A flexible urban load density-dependent framework for low-carbon distribution expansion planning in the presence of hybrid hydrogen/battery/wind/solar energy systems," Applied Energy, Elsevier, vol. 364(C).
    14. G., Varathan & J., Belwin Edward, 2024. "A review of uncertainty management approaches for active distribution system planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 205(C).
    15. Hoseinzadeh, Siamak & Astiaso Garcia, Davide & Huang, Lizhen, 2023. "Grid-connected renewable energy systems flexibility in Norway islands’ Decarbonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    16. Liu, Xin & Lin, Xueshan & Qiu, Haifeng & Li, Yang & Huang, Tao, 2024. "Optimal aggregation and disaggregation for coordinated operation of virtual power plant with distribution network operator," Applied Energy, Elsevier, vol. 376(PA).
    17. Hua, Zhihao & Li, Jiayong & Zhou, Bin & Or, Siu Wing & Chan, Ka Wing & Meng, Yunfan, 2022. "Game-theoretic multi-energy trading framework for strategic biogas-solar renewable energy provider with heterogeneous consumers," Energy, Elsevier, vol. 260(C).
    18. Liu, Zhouding & Nazari-Heris, Morteza, 2023. "Optimal bidding strategy of multi-carrier systems in electricity markets using information gap decision theory," Energy, Elsevier, vol. 280(C).
    19. Wu, Dongge & Chang, Xinyue & Xue, Yixun & Huang, Yuxi & Su, Jia & Sun, Hongbin, 2024. "Bilevel low-carbon coordinated operation of integrated energy systems considering dynamic tiered carbon pricing methodology," Energy, Elsevier, vol. 310(C).
    20. Xu, Yijun & Zhang, Xuan & Li, Ji, 2024. "Multiple energy planning in the energy hub considering renewable sources, electric vehicles and management in the daily electricity market with wind multi-objective optimization algorithm," Energy, Elsevier, vol. 309(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:365:y:2024:i:c:s0306261924006652. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.