Neural network-based surrogate modeling and optimization of a multigeneration system
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2024.123130
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Wang, Xiaodi & Liu, Youbo & Zhao, Junbo & Liu, Chang & Liu, Junyong & Yan, Jinyue, 2021. "Surrogate model enabled deep reinforcement learning for hybrid energy community operation," Applied Energy, Elsevier, vol. 289(C).
- Mahmoudan, Alireza & Samadof, Parviz & Hosseinzadeh, Siamak & Garcia, Davide Astiaso, 2021. "A multigeneration cascade system using ground-source energy with cold recovery: 3E analyses and multi-objective optimization," Energy, Elsevier, vol. 233(C).
- Mahmoudan, Alireza & Esmaeilion, Farbod & Hoseinzadeh, Siamak & Soltani, Madjid & Ahmadi, Pouria & Rosen, Marc, 2022. "A geothermal and solar-based multigeneration system integrated with a TEG unit: Development, 3E analyses, and multi-objective optimization," Applied Energy, Elsevier, vol. 308(C).
- Pinto, Giuseppe & Deltetto, Davide & Capozzoli, Alfonso, 2021. "Data-driven district energy management with surrogate models and deep reinforcement learning," Applied Energy, Elsevier, vol. 304(C).
- Nyitrai, Tamás & Virág, Miklós, 2019. "The effects of handling outliers on the performance of bankruptcy prediction models," Socio-Economic Planning Sciences, Elsevier, vol. 67(C), pages 34-42.
- Abid Hossain Khan & Salauddin Omar & Nadia Mushtary & Richa Verma & Dinesh Kumar & Syed Alam, 2023. "Digital Twin and Artificial Intelligence Incorporated with Surrogate Modeling for Hybrid and Sustainable Energy Systems," Springer Books, in: Michel Fathi & Enrico Zio & Panos M. Pardalos (ed.), Handbook of Smart Energy Systems, pages 2837-2859, Springer.
- Bornatico, Raffaele & Hüssy, Jonathan & Witzig, Andreas & Guzzella, Lino, 2013. "Surrogate modeling for the fast optimization of energy systems," Energy, Elsevier, vol. 57(C), pages 653-662.
- Yoro, Kelvin O. & Daramola, Michael O. & Sekoai, Patrick T. & Wilson, Uwemedimo N. & Eterigho-Ikelegbe, Orevaoghene, 2021. "Update on current approaches, challenges, and prospects of modeling and simulation in renewable and sustainable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
- Abokersh, Mohamed Hany & Vallès, Manel & Cabeza, Luisa F. & Boer, Dieter, 2020. "A framework for the optimal integration of solar assisted district heating in different urban sized communities: A robust machine learning approach incorporating global sensitivity analysis," Applied Energy, Elsevier, vol. 267(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Shervin Espahbod & Arash Tashakkori & Mahsa Mohsenibeigzadeh & Mehrnaz Zarei & Ghasem Golshan Arani & Maria Dzikuć & Maciej Dzikuć, 2024. "Blockchain-Driven Supply Chain Analytics and Sustainable Performance: Analysis Using PLS-SEM and ANFIS," Sustainability, MDPI, vol. 16(15), pages 1-16, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Shoaei, Mersad & Hajinezhad, Ahmad & Moosavian, Seyed Farhan, 2023. "Design, energy, exergy, economy, and environment (4E) analysis, and multi-objective optimization of a novel integrated energy system based on solar and geothermal resources," Energy, Elsevier, vol. 280(C).
- Xin, Yong-Lin & Zhao, Tian & Sun, Qing-Han & Chen, Qun, 2024. "An efficient yet accurate optimization algorithm for thermal systems integrating heat current method and generalized Benders decomposition," Energy, Elsevier, vol. 304(C).
- Das, Hirakh Jyoti & Saikia, Rituraj & Mahanta, Pinakeswar, 2023. "Thermo-economic assessment of bubbling fluidized bed paddy dryers," Energy, Elsevier, vol. 263(PC).
- Naseri, F. & Gil, S. & Barbu, C. & Cetkin, E. & Yarimca, G. & Jensen, A.C. & Larsen, P.G. & Gomes, C., 2023. "Digital twin of electric vehicle battery systems: Comprehensive review of the use cases, requirements, and platforms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
- Wang, Lixiao & Jing, Z.X. & Zheng, J.H. & Wu, Q.H. & Wei, Feng, 2018. "Decentralized optimization of coordinated electrical and thermal generations in hierarchical integrated energy systems considering competitive individuals," Energy, Elsevier, vol. 158(C), pages 607-622.
- Pasta, Edoardo & Faedo, Nicolás & Mattiazzo, Giuliana & Ringwood, John V., 2023. "Towards data-driven and data-based control of wave energy systems: Classification, overview, and critical assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
- Lidiya Guryanova & Olena Bolotova & Vitalii Gvozdytskyi & Sergienko Olena, 2020. "Long-term financial sustainability: An evaluation methodology with threats considerations," RIVISTA DI STUDI SULLA SOSTENIBILITA', FrancoAngeli Editore, vol. 0(1), pages 47-69.
- Waqar Muhammad Ashraf & Ghulam Moeen Uddin & Syed Muhammad Arafat & Sher Afghan & Ahmad Hassan Kamal & Muhammad Asim & Muhammad Haider Khan & Muhammad Waqas Rafique & Uwe Naumann & Sajawal Gul Niazi &, 2020. "Optimization of a 660 MW e Supercritical Power Plant Performance—A Case of Industry 4.0 in the Data-Driven Operational Management Part 1. Thermal Efficiency," Energies, MDPI, vol. 13(21), pages 1-33, October.
- Beata Gavurova & Sylvia Jencova & Radovan Bacik & Marta Miskufova & Stanislav Letkovsky, 2022. "Artificial intelligence in predicting the bankruptcy of non-financial corporations," Oeconomia Copernicana, Institute of Economic Research, vol. 13(4), pages 1215-1251, December.
- Li, Yan & Feng, Tian-tian & Liu, Li-li & Zhang, Meng-xi, 2023. "How do the electricity market and carbon market interact and achieve integrated development?--A bibliometric-based review," Energy, Elsevier, vol. 265(C).
- Abokersh, Mohamed Hany & Vallès, Manel & Cabeza, Luisa F. & Boer, Dieter, 2020. "A framework for the optimal integration of solar assisted district heating in different urban sized communities: A robust machine learning approach incorporating global sensitivity analysis," Applied Energy, Elsevier, vol. 267(C).
- Nweye, Kingsley & Sankaranarayanan, Siva & Nagy, Zoltan, 2023. "MERLIN: Multi-agent offline and transfer learning for occupant-centric operation of grid-interactive communities," Applied Energy, Elsevier, vol. 346(C).
- Zhu, Ziqing & Hu, Ze & Chan, Ka Wing & Bu, Siqi & Zhou, Bin & Xia, Shiwei, 2023. "Reinforcement learning in deregulated energy market: A comprehensive review," Applied Energy, Elsevier, vol. 329(C).
- Elena Gregova & Katarina Valaskova & Peter Adamko & Milos Tumpach & Jaroslav Jaros, 2020. "Predicting Financial Distress of Slovak Enterprises: Comparison of Selected Traditional and Learning Algorithms Methods," Sustainability, MDPI, vol. 12(10), pages 1-17, May.
- Pinto, Giuseppe & Deltetto, Davide & Capozzoli, Alfonso, 2021. "Data-driven district energy management with surrogate models and deep reinforcement learning," Applied Energy, Elsevier, vol. 304(C).
- Zhang, Xiaofeng & Su, Junjie & Jiao, Fan & Zeng, Rong & Pan, Jinjun & He, Xu & Deng, Qiaolin & Li, Hongqiang, 2024. "Performance investigation and operation optimization of an innovative hybrid renewable energy integration system for commercial building complex and hydrogen vehicles," Energy, Elsevier, vol. 301(C).
- Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
- Guo, Yuxiang & Qu, Shengli & Wang, Chuang & Xing, Ziwen & Duan, Kaiwen, 2024. "Optimal dynamic thermal management for data center via soft actor-critic algorithm with dynamic control interval and combined-value state space," Applied Energy, Elsevier, vol. 373(C).
- Byung-Ki Jeon & Eui-Jong Kim, 2022. "White-Model Predictive Control for Balancing Energy Savings and Thermal Comfort," Energies, MDPI, vol. 15(7), pages 1-12, March.
- Zhu, Dafeng & Yang, Bo & Liu, Yuxiang & Wang, Zhaojian & Ma, Kai & Guan, Xinping, 2022. "Energy management based on multi-agent deep reinforcement learning for a multi-energy industrial park," Applied Energy, Elsevier, vol. 311(C).
More about this item
Keywords
Surrogate modeling; Artificial neural network (ANN); Long-short term memory (LSTM); Convolutional neural network (CNN); Multi-objective optimization; Multigeneration system;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:364:y:2024:i:c:s0306261924005130. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.