Nonlinear simulating of the Proton Exchange Membrane Fuel Cells utilizing Ridgelet Neural Network optimized using a hybrid form of Northern Goshawk Optimizer
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2024.122767
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Cai, Wei & Mohammaditab, Rasoul & Fathi, Gholamreza & Wakil, Karzan & Ebadi, Abdol Ghaffar & Ghadimi, Noradin, 2019. "Optimal bidding and offering strategies of compressed air energy storage: A hybrid robust-stochastic approach," Renewable Energy, Elsevier, vol. 143(C), pages 1-8.
- Rezk, Hegazy & Olabi, A.G. & Ferahtia, Seydali & Sayed, Enas Taha, 2022. "Accurate parameter estimation methodology applied to model proton exchange membrane fuel cell," Energy, Elsevier, vol. 255(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Li, Xuehan & Wang, Wei & Ye, Lingling & Ren, Guorui & Fang, Fang & Liu, Jizhen & Chen, Zhe & Zhou, Qiang, 2024. "Improving frequency regulation ability for a wind-thermal power system by multi-objective optimized sliding mode control design," Energy, Elsevier, vol. 300(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Liu, Lijun & Qian, Jin & Hua, Li & Zhang, Bin, 2022. "System estimation of the SOFCs using fractional-order social network search algorithm," Energy, Elsevier, vol. 255(C).
- Li, Zongxiang & Li, Liwei & Chen, Jing & Wang, Dongqing, 2024. "A multi-head attention mechanism aided hybrid network for identifying batteries’ state of charge," Energy, Elsevier, vol. 286(C).
- Hegazy Rezk & A. G. Olabi & Tabbi Wilberforce & Enas Taha Sayed, 2023. "A Comprehensive Review and Application of Metaheuristics in Solving the Optimal Parameter Identification Problems," Sustainability, MDPI, vol. 15(7), pages 1-24, March.
- Cheng, Shen & Zhao, Gaiju & Gao, Ming & Shi, Yuetao & Huang, Mingming & Yousefi, Nasser, 2021. "Optimal hybrid energy system for locomotive utilizing improved Locust Swarm optimizer," Energy, Elsevier, vol. 218(C).
- Wu, Cong & Li, Jiaxuan & Liu, Wenjin & He, Yuzhe & Nourmohammadi, Samad, 2023. "Short-term electricity demand forecasting using a hybrid ANFIS–ELM network optimised by an improved parasitism–predation algorithm," Applied Energy, Elsevier, vol. 345(C).
- Lu, Xiaohui & Li, Bing & Guo, Lin & Wang, Peifang & Yousefi, Nasser, 2021. "Exergy analysis of a polymer fuel cell and identification of its optimum operating conditions using improved Farmland Fertility Optimization," Energy, Elsevier, vol. 216(C).
- Alaa A. Zaky & Rania M. Ghoniem & F. Selim, 2023. "Precise Modeling of Proton Exchange Membrane Fuel Cell Using the Modified Bald Eagle Optimization Algorithm," Sustainability, MDPI, vol. 15(13), pages 1-16, July.
- Hassan Ali, Hossam & Fathy, Ahmed, 2024. "Reliable exponential distribution optimizer-based methodology for modeling proton exchange membrane fuel cells at different conditions," Energy, Elsevier, vol. 292(C).
- Wu, Danman & Bai, Jiayu & Wei, Wei & Chen, Laijun & Mei, Shengwei, 2021. "Optimal bidding and scheduling of AA-CAES based energy hub considering cascaded consumption of heat," Energy, Elsevier, vol. 233(C).
- Li, Bingkang & Zhao, Huiru & Wang, Xuejie & Zhao, Yihang & Zhang, Yuanyuan & Lu, Hao & Wang, Yuwei, 2022. "Distributionally robust offering strategy of the aggregator integrating renewable energy generator and energy storage considering uncertainty and connections between the mid-to-long-term and spot elec," Renewable Energy, Elsevier, vol. 201(P1), pages 400-417.
- Sun, Guoqiang & Shen, Sichen & Chen, Sheng & Zhou, Yizhou & Wei, Zhinong, 2022. "Bidding strategy for a prosumer aggregator with stochastic renewable energy production in energy and reserve markets," Renewable Energy, Elsevier, vol. 191(C), pages 278-290.
- Dapeng Liu & Mao Zhao & Haiqing Xu & Mansoureh Mehrgan, 2021. "A new model to investigate the impact of innovative IT services on smart urban growth: The mediating role of urban planners’ knowledge," Growth and Change, Wiley Blackwell, vol. 52(2), pages 1040-1061, June.
- Liu, Xin & Li, Yang & Lin, Xueshan & Guo, Jiqun & Shi, Yunpeng & Shen, Yunwei, 2022. "Dynamic bidding strategy for a demand response aggregator in the frequency regulation market," Applied Energy, Elsevier, vol. 314(C).
- Yang, Zixuan & Liu, Qian & Zhang, Leiyu & Dai, Jialei & Razmjooy, Navid, 2020. "Model parameter estimation of the PEMFCs using improved Barnacles Mating Optimization algorithm," Energy, Elsevier, vol. 212(C).
- Hannes Wallimann & David Imhof & Martin Huber, 2023.
"A Machine Learning Approach for Flagging Incomplete Bid-Rigging Cartels,"
Computational Economics, Springer;Society for Computational Economics, vol. 62(4), pages 1669-1720, December.
- Wallimann, Hannes & Imhof, David & Huber, Martin, 2020. "A Machine Learning Approach for Flagging Incomplete Bid-rigging Cartels," FSES Working Papers 513, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
- Hannes Wallimann & David Imhof & Martin Huber, 2020. "A Machine Learning Approach for Flagging Incomplete Bid-rigging Cartels," Papers 2004.05629, arXiv.org.
- Yang, Peiwen & Dong, Jun & Lin, Jin & Liu, Yao & Fang, Debin, 2021. "Analysis of offering behavior of generation-side integrated energy aggregator in electricity market:A Bayesian evolutionary approach," Energy, Elsevier, vol. 228(C).
- Emiliano Borri & Alessio Tafone & Gabriele Comodi & Alessandro Romagnoli & Luisa F. Cabeza, 2022. "Compressed Air Energy Storage—An Overview of Research Trends and Gaps through a Bibliometric Analysis," Energies, MDPI, vol. 15(20), pages 1-21, October.
- Hou, Rui & Li, Shanshan & Wu, Minrong & Ren, Guowen & Gao, Wei & Khayatnezhad, Majid & gholinia, Fatemeh, 2021. "Assessing of impact climate parameters on the gap between hydropower supply and electricity demand by RCPs scenarios and optimized ANN by the improved Pathfinder (IPF) algorithm," Energy, Elsevier, vol. 237(C).
- Yuan, Zhi & Wang, Weiqing & Wang, Haiyun & Mizzi, Scott, 2020. "Combination of cuckoo search and wavelet neural network for midterm building energy forecast," Energy, Elsevier, vol. 202(C).
- Sun, Xianke & Wang, Gaoliang & Xu, Liuyang & Yuan, Honglei & Yousefi, Nasser, 2021. "Optimal estimation of the PEM fuel cells applying deep belief network optimized by improved archimedes optimization algorithm," Energy, Elsevier, vol. 237(C).
More about this item
Keywords
Ridgelet Neural Network (RNN); PEMFC (Proton Exchange Membrane Fuel Cell); Hybrid Northern Goshawk Optimization (HNGO); Output voltage prediction; Nonlinear modeling; Optimization algorithm;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:360:y:2024:i:c:s0306261924001508. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.