IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v357y2024ics0306261923018822.html
   My bibliography  Save this article

Social welfare evaluation during demand response programs execution considering machine learning-based load profile clustering

Author

Listed:
  • Moazzen, Farid
  • Alikhani, Majid
  • Aghaei, Jamshid
  • Hossain, M.J.

Abstract

In the last decade, with the introduction of smart meters to smart grids, demand response programs (DRPs) have been widely adopted to establish a generation and consumption balance. DRPs provide many benefits for efficient grid management. However, these programs are conducive to higher levels of dissatisfaction by changing grid customers' consumption patterns. This paper aims to investigate the effects of DRPs on social welfare (SW). To this end, the paper presents a mathematical model for SW during the implementation of DRPs. In the proposed model, the level of customer satisfaction is assumed the main factor contributing to SW. This mathematical model considers different types of DRPs in terms of their impacts on SW. The paper also seeks to obtain linear and nonlinear models of DRPs and the coefficient of participation (CoP). CoP as an indicator shows the percentage of customers who actively participate in each DRP and plays a significant role in the assessment of the SW level. Moreover, owing to the sparsity and variety of distribution network customers, load patterns are classified into different clusters to take the load types into account. As a matter of fact, this process aims to identify similar patterns and thus, the same level of satisfaction for each separate cluster. The classification process is performed by using a machine learning-based clustering method known as the Affinity Propagation (AP) algorithm. Then, the model calculates the level of SW for the clusters based on the usage of electrical equipment and the time of day when they are turned on. The obtained levels of SW help operators select the best programs for every cluster in terms of customer satisfaction, and achieve the highest performance of DRPs. Lastly, the model is evaluated using real data of a distribution network to ensure the effectiveness and accuracy of the model.

Suggested Citation

  • Moazzen, Farid & Alikhani, Majid & Aghaei, Jamshid & Hossain, M.J., 2024. "Social welfare evaluation during demand response programs execution considering machine learning-based load profile clustering," Applied Energy, Elsevier, vol. 357(C).
  • Handle: RePEc:eee:appene:v:357:y:2024:i:c:s0306261923018822
    DOI: 10.1016/j.apenergy.2023.122518
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923018822
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122518?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Silva, Pedro Mendonça & Moutinho, Victor Ferreira & Moreira, António Carrizo, 2022. "Do social and economic factors affect the technical efficiency in entrepreneurship activities? Evidence from European countries using a two-stage DEA model," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    2. Zhou, Kai-le & Yang, Shan-lin & Shen, Chao, 2013. "A review of electric load classification in smart grid environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 103-110.
    3. Imani, Mahmood Hosseini & Ghadi, M. Jabbari & Ghavidel, Sahand & Li, Li, 2018. "Demand Response Modeling in Microgrid Operation: a Review and Application for Incentive-Based and Time-Based Programs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 486-499.
    4. Hayashi, Masayoshi, 2014. "Forecasting welfare caseloads: The case of the Japanese public assistance program," Socio-Economic Planning Sciences, Elsevier, vol. 48(2), pages 105-114.
    5. Nikzad, Mehdi & Samimi, Abouzar, 2021. "Integration of designing price-based demand response models into a stochastic bi-level scheduling of multiple energy carrier microgrids considering energy storage systems," Applied Energy, Elsevier, vol. 282(PA).
    6. Akbulut, Hale & Seçilmiş, Erdem, 2019. "Estimation of a social discount rate for Turkey," Socio-Economic Planning Sciences, Elsevier, vol. 67(C), pages 78-85.
    7. lo Storto, Corrado, 2020. "Performance evaluation of social service provision in Italian major municipalities using Network Data Envelopment Analysis," Socio-Economic Planning Sciences, Elsevier, vol. 71(C).
    8. Aalami, H.A. & Moghaddam, M. Parsa & Yousefi, G.R., 2010. "Demand response modeling considering Interruptible/Curtailable loads and capacity market programs," Applied Energy, Elsevier, vol. 87(1), pages 243-250, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Davarzani, Sima & Pisica, Ioana & Taylor, Gareth A. & Munisami, Kevin J., 2021. "Residential Demand Response Strategies and Applications in Active Distribution Network Management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    2. Kalim Ullah & Quanyuan Jiang & Guangchao Geng & Rehan Ali Khan & Sheraz Aslam & Wahab Khan, 2022. "Optimization of Demand Response and Power-Sharing in Microgrids for Cost and Power Losses," Energies, MDPI, vol. 15(9), pages 1-22, April.
    3. Yang, Zhichun & Tian, Hao & Min, Huaidong & Yang, Fan & Hu, Wei & Su, Lei & SaeidNahaei, Sanam, 2023. "Optimal microgrid programming based on an energy storage system, price-based demand response, and distributed renewable energy resources," Utilities Policy, Elsevier, vol. 80(C).
    4. Yiqi Dong & Zuoji Dong, 2023. "Bibliometric Analysis of Game Theory on Energy and Natural Resource," Sustainability, MDPI, vol. 15(2), pages 1-19, January.
    5. Nwulu, Nnamdi I. & Xia, Xiaohua, 2015. "Implementing a model predictive control strategy on the dynamic economic emission dispatch problem with game theory based demand response programs," Energy, Elsevier, vol. 91(C), pages 404-419.
    6. Singh, Bharat & Kumar, Ashwani, 2023. "Optimal energy management and feasibility analysis of hybrid renewable energy sources with BESS and impact of electric vehicle load with demand response program," Energy, Elsevier, vol. 278(PA).
    7. Haidar, Ahmed M.A. & Muttaqi, Kashem & Sutanto, Danny, 2015. "Smart Grid and its future perspectives in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1375-1389.
    8. Meyabadi, A. Fattahi & Deihimi, M.H., 2017. "A review of demand-side management: Reconsidering theoretical framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 367-379.
    9. Eissa, M.M., 2018. "First time real time incentive demand response program in smart grid with “i-Energy” management system with different resources," Applied Energy, Elsevier, vol. 212(C), pages 607-621.
    10. Abdul Conteh & Mohammed Elsayed Lotfy & Kiptoo Mark Kipngetich & Tomonobu Senjyu & Paras Mandal & Shantanu Chakraborty, 2019. "An Economic Analysis of Demand Side Management Considering Interruptible Load and Renewable Energy Integration: A Case Study of Freetown Sierra Leone," Sustainability, MDPI, vol. 11(10), pages 1-19, May.
    11. Jiao, P.H. & Chen, J.J. & Cai, X. & Wang, L.L. & Zhao, Y.L. & Zhang, X.H. & Chen, W.G., 2021. "Joint active and reactive for allocation of renewable energy and energy storage under uncertain coupling," Applied Energy, Elsevier, vol. 302(C).
    12. Capozzoli, Alfonso & Piscitelli, Marco Savino & Brandi, Silvio & Grassi, Daniele & Chicco, Gianfranco, 2018. "Automated load pattern learning and anomaly detection for enhancing energy management in smart buildings," Energy, Elsevier, vol. 157(C), pages 336-352.
    13. Ramin Nourollahi & Pouya Salyani & Kazem Zare & Behnam Mohammadi-Ivatloo & Zulkurnain Abdul-Malek, 2022. "Peak-Load Management of Distribution Network Using Conservation Voltage Reduction and Dynamic Thermal Rating," Sustainability, MDPI, vol. 14(18), pages 1-17, September.
    14. Molina-Solana, Miguel & Ros, María & Ruiz, M. Dolores & Gómez-Romero, Juan & Martin-Bautista, M.J., 2017. "Data science for building energy management: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 598-609.
    15. Zhou, Kaile & Yang, Shanlin, 2015. "A framework of service-oriented operation model of China׳s power system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 719-725.
    16. Zheng, Menglian & Meinrenken, Christoph J. & Lackner, Klaus S., 2014. "Agent-based model for electricity consumption and storage to evaluate economic viability of tariff arbitrage for residential sector demand response," Applied Energy, Elsevier, vol. 126(C), pages 297-306.
    17. Shafie-khah, M. & Kheradmand, M. & Javadi, S. & Azenha, M. & de Aguiar, J.L.B. & Castro-Gomes, J. & Siano, P. & Catalão, J.P.S., 2016. "Optimal behavior of responsive residential demand considering hybrid phase change materials," Applied Energy, Elsevier, vol. 163(C), pages 81-92.
    18. Hyun Cheol Jeong & Jaesung Jung & Byung O Kang, 2020. "Development of Operational Strategies of Energy Storage System Using Classification of Customer Load Profiles under Time-of-Use Tariffs in South Korea," Energies, MDPI, vol. 13(7), pages 1-17, April.
    19. Moraes, Ricardo Kalil & Wanke, Peter Fernandes & Faria, João Ricardo, 2021. "Unveiling the endogeneity between social-welfare and labor efficiency: Two-stage NDEA neural network approach," Socio-Economic Planning Sciences, Elsevier, vol. 77(C).
    20. Dehnavi, Ehsan & Abdi, Hamdi, 2016. "Optimal pricing in time of use demand response by integrating with dynamic economic dispatch problem," Energy, Elsevier, vol. 109(C), pages 1086-1094.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:357:y:2024:i:c:s0306261923018822. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.