IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v355y2024ics0306261923016318.html
   My bibliography  Save this article

Life cycle carbon footprint accounting of an offshore wind farm in Southeast China—Simplified models and carbon benchmarks for typhoons

Author

Listed:
  • Sun, Zhen
  • You, Xianhui

Abstract

Offshore wind farms are fast-spreading off the southeast coast of China to achieve carbon neutrality by 2060. However, unfavorable weather conditions in Southeast China (e.g. frequent typhoons and severe wind intermittency) may increase the carbon footprint of offshore wind energy. But typhoons have never been considered in carbon accounting before, which may affect the design decisions of stakeholders and research priority setting for academicians. (i) To determine the effect of typhoons on carbon footprint, a life cycle assessment was performed on a typical offshore wind farm using real data. The results demonstrate that typhoons can be the largest contributor to carbon footprint, and the maximum wind speed of typhoons is the most critical parameter to carbon footprint. (ii) To quantify the carbon emissions caused by typhoons, simplified models estimating carbon emission intensity under different maximum wind speeds of typhoons are established, using Monte Carlo method based on 51 historical typhoons. The models imply that wind turbines with Permanent Magnet Synchronous Generator (PMSG) are highly recommended in typhoon-prone area, because their carbon footprint is smaller than those with Doubly-Fed Induction Generator (DFIG). (iii) To set carbon benchmarks for typhoons, statistic analysis was conducted based on the simulated samples generated by Monte Carlo method. The carbon benchmarks of typhoons show that gearbox has the highest carbon emission intensity (mean=4.35g/kW, 95th percentile=7.00g/kW) among all components, resulting DFIG with gearbox not suitable in typhoon-areas. The site selection of offshore wind farms in Southeast China should avoid areas where the maximum wind speed of typhoons exceeds 44.5 m/s. This study emphasizes the importance of typhoons in carbon footprint accounting for offshore wind farms in Southeast China. More significantly, the proposed simplified models and carbon benchmarks of typhoons can be applied to feasibility studies in early design stage for engineers and stakeholders.

Suggested Citation

  • Sun, Zhen & You, Xianhui, 2024. "Life cycle carbon footprint accounting of an offshore wind farm in Southeast China—Simplified models and carbon benchmarks for typhoons," Applied Energy, Elsevier, vol. 355(C).
  • Handle: RePEc:eee:appene:v:355:y:2024:i:c:s0306261923016318
    DOI: 10.1016/j.apenergy.2023.122267
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923016318
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122267?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Turconi, R. & O’Dwyer, C. & Flynn, D. & Astrup, T., 2014. "Emissions from cycling of thermal power plants in electricity systems with high penetration of wind power: Life cycle assessment for Ireland," Applied Energy, Elsevier, vol. 131(C), pages 1-8.
    2. Li, Mingxin & Jiang, Xiaoli & Carroll, James & Negenborn, Rudy R., 2022. "A multi-objective maintenance strategy optimization framework for offshore wind farms considering uncertainty," Applied Energy, Elsevier, vol. 321(C).
    3. Li, Shenghu, 2013. "Reliability models for DFIGs considering topology change under different control strategies and components data change under adverse operation environments," Renewable Energy, Elsevier, vol. 57(C), pages 144-150.
    4. Hu, Xiaonong & Fang, Genshen & Yang, Jiayu & Zhao, Lin & Ge, Yaojun, 2023. "Simplified models for uncertainty quantification of extreme events using Monte Carlo technique," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    5. Cadini, Francesco & Agliardi, Gian Luca & Zio, Enrico, 2017. "A modeling and simulation framework for the reliability/availability assessment of a power transmission grid subject to cascading failures under extreme weather conditions," Applied Energy, Elsevier, vol. 185(P1), pages 267-279.
    6. Bonou, Alexandra & Laurent, Alexis & Olsen, Stig I., 2016. "Life cycle assessment of onshore and offshore wind energy-from theory to application," Applied Energy, Elsevier, vol. 180(C), pages 327-337.
    7. Chen, G.Q. & Yang, Q. & Zhao, Y.H., 2011. "Renewability of wind power in China: A case study of nonrenewable energy cost and greenhouse gas emission by a plant in Guangxi," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2322-2329, June.
    8. Ji, Shiyu & Chen, Bin, 2016. "Carbon footprint accounting of a typical wind farm in China," Applied Energy, Elsevier, vol. 180(C), pages 416-423.
    9. Garcia-Teruel, Anna & Rinaldi, Giovanni & Thies, Philipp R. & Johanning, Lars & Jeffrey, Henry, 2022. "Life cycle assessment of floating offshore wind farms: An evaluation of operation and maintenance," Applied Energy, Elsevier, vol. 307(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yashuang Feng & Lixiao Zhang, 2023. "The GHG Intensities of Wind Power Plants in China from a Life-Cycle Perspective: The Impacts of Geographical Location, Turbine Technology and Management Level," Sustainability, MDPI, vol. 15(5), pages 1-17, March.
    2. Li, Jinying & Li, Sisi & Wu, Fan, 2020. "Research on carbon emission reduction benefit of wind power project based on life cycle assessment theory," Renewable Energy, Elsevier, vol. 155(C), pages 456-468.
    3. Niklas Andersen & Ola Eriksson & Karl Hillman & Marita Wallhagen, 2016. "Wind Turbines’ End-of-Life: Quantification and Characterisation of Future Waste Materials on a National Level," Energies, MDPI, vol. 9(12), pages 1-24, November.
    4. Giambattista Guidi & Anna Carmela Violante & Simona De Iuliis, 2023. "Environmental Impact of Electricity Generation Technologies: A Comparison between Conventional, Nuclear, and Renewable Technologies," Energies, MDPI, vol. 16(23), pages 1-33, November.
    5. Roger Samsó & Júlia Crespin & Antonio García-Olivares & Jordi Solé, 2023. "Examining the Potential of Marine Renewable Energy: A Net Energy Perspective," Sustainability, MDPI, vol. 15(10), pages 1-35, May.
    6. Schlör, H. & Venghaus, S. & Zapp, P. & Marx, J. & Schreiber, A. & Hake, J.-Fr., 2018. "The energy-mineral-society nexus – A social LCA model," Applied Energy, Elsevier, vol. 228(C), pages 999-1008.
    7. Wang, Like & Wang, Yuan & Du, Huibin & Zuo, Jian & Yi Man Li, Rita & Zhou, Zhihua & Bi, Fenfen & Garvlehn, McSimon P., 2019. "A comparative life-cycle assessment of hydro-, nuclear and wind power: A China study," Applied Energy, Elsevier, vol. 249(C), pages 37-45.
    8. Li, Qiangfeng & Duan, Huabo & Xie, Minghui & Kang, Peng & Ma, Yi & Zhong, Ruoyu & Gao, Tianming & Zhong, Weiqiong & Wen, Bojie & Bai, Feng & Vuppaladadiyam, Arun K., 2021. "Life cycle assessment and life cycle cost analysis of a 40 MW wind farm with consideration of the infrastructure," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    9. Summerfield-Ryan, Oliver & Park, Susan, 2023. "The power of wind: The global wind energy industry's successes and failures," Ecological Economics, Elsevier, vol. 210(C).
    10. Yang, Jin & Song, Dan & Wu, Feng, 2017. "Regional variations of environmental co-benefits of wind power generation in China," Applied Energy, Elsevier, vol. 206(C), pages 1267-1281.
    11. Gao, Chengkang & Zhu, Sulong & An, Nan & Na, Hongming & You, Huan & Gao, Chengbo, 2021. "Comprehensive comparison of multiple renewable power generation methods: A combination analysis of life cycle assessment and ecological footprint," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    12. Zhu, Zimo & Zhang, Jian & Zhu, Songye & Yang, Jun, 2023. "Digital twin technology for wind turbine towers based on joint load–response estimation: A laboratory experimental study," Applied Energy, Elsevier, vol. 352(C).
    13. Nian, Victor & Liu, Yang & Zhong, Sheng, 2019. "Life cycle cost-benefit analysis of offshore wind energy under the climatic conditions in Southeast Asia – Setting the bottom-line for deployment," Applied Energy, Elsevier, vol. 233, pages 1003-1014.
    14. Mendecka, Barbara & Lombardi, Lidia, 2019. "Life cycle environmental impacts of wind energy technologies: A review of simplified models and harmonization of the results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 462-480.
    15. Fangyi Li & Zhaoyang Ye & Xilin Xiao & Dawei Ma, 2019. "Environmental Benefits of Stock Evolution of Coal-Fired Power Generators in China," Sustainability, MDPI, vol. 11(19), pages 1-17, October.
    16. Zhu, Jianhua & Peng, Yan & Gong, Zhuping & Sun, Yanming & Lai, Chaoan & Wang, Qing & Zhu, Xiaojun & Gan, Zhongxue, 2019. "Dynamic analysis of SNG and PNG supply: The stability and robustness view #," Energy, Elsevier, vol. 185(C), pages 717-729.
    17. Fauzan Hanif Jufri & Jun-Sung Kim & Jaesung Jung, 2017. "Analysis of Determinants of the Impact and the Grid Capability to Evaluate and Improve Grid Resilience from Extreme Weather Event," Energies, MDPI, vol. 10(11), pages 1-17, November.
    18. Wu, X.D. & Guo, J.L. & Chen, G.Q., 2018. "The striking amount of carbon emissions by the construction stage of coal-fired power generation system in China," Energy Policy, Elsevier, vol. 117(C), pages 358-369.
    19. Yang Guo & Liqun Peng & Jinping Tian & Denise L. Mauzerall, 2023. "Deploying green hydrogen to decarbonize China’s coal chemical sector," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    20. Miguel A. Rodríguez-López & Luis M. López-González & Luis M. López-Ochoa & Jesús Las-Heras-Casas, 2018. "Methodology for Detecting Malfunctions and Evaluating the Maintenance Effectiveness in Wind Turbine Generator Bearings Using Generic versus Specific Models from SCADA Data," Energies, MDPI, vol. 11(4), pages 1-22, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:355:y:2024:i:c:s0306261923016318. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.