IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v354y2024ipbs030626192301615x.html
   My bibliography  Save this article

Feasibility study of energy storage using hydraulic fracturing in shale formations

Author

Listed:
  • Hu, ZhiWen
  • Wang, HanYi

Abstract

Electric energy storage is currently the primary solution for addressing the intermittency and fluctuation of renewable energy sources. Traditional energy storage methods often struggle to simultaneously meet the demands of long storage duration, large capacity, high efficiency, and low cost. In this study, we present and verify the feasibility of a new energy storage method that utilizes hydraulic fracturing technology to store electrical energy in artificial fractures. Our study analyzed factors that impact energy storage capacity and efficiency, which provides a theoretical basis for optimizing hydraulic fracturing design for energy storage. This study also shows a promising direction for transforming depleted shale oil and gas wells into energy storage wells.

Suggested Citation

  • Hu, ZhiWen & Wang, HanYi, 2024. "Feasibility study of energy storage using hydraulic fracturing in shale formations," Applied Energy, Elsevier, vol. 354(PB).
  • Handle: RePEc:eee:appene:v:354:y:2024:i:pb:s030626192301615x
    DOI: 10.1016/j.apenergy.2023.122251
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192301615X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122251?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rehman, Shafiqur & Al-Hadhrami, Luai M. & Alam, Md. Mahbub, 2015. "Pumped hydro energy storage system: A technological review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 586-598.
    2. Akpoti, Komlavi & Obahoundje, S. & Mortey, E. M. & Diawuo, F. A. & Antwi, E. O. & Gyamfi, S. & Domfeh, M. K. & Kabo-bah, A. T., 2023. "Technological advances in prospecting sites for pumped hydro energy storage," Book Chapters,, International Water Management Institute.
    3. Lund, Henrik, 2007. "Renewable energy strategies for sustainable development," Energy, Elsevier, vol. 32(6), pages 912-919.
    4. Nzotcha, Urbain & Kenfack, Joseph & Blanche Manjia, Marceline, 2019. "Integrated multi-criteria decision making methodology for pumped hydro-energy storage plant site selection from a sustainable development perspective with an application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 930-947.
    5. Ellabban, Omar & Abu-Rub, Haitham & Blaabjerg, Frede, 2014. "Renewable energy resources: Current status, future prospects and their enabling technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 748-764.
    6. Abdul Ghani Olabi & Tabbi Wilberforce & Mohammad Ali Abdelkareem & Mohamad Ramadan, 2021. "Critical Review of Flywheel Energy Storage System," Energies, MDPI, vol. 14(8), pages 1-33, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdul, Daud & Wenqi, Jiang & Tanveer, Arsalan, 2022. "Prioritization of renewable energy source for electricity generation through AHP-VIKOR integrated methodology," Renewable Energy, Elsevier, vol. 184(C), pages 1018-1032.
    2. Toufani, Parinaz & Nadar, Emre & Kocaman, Ayse Selin, 2022. "Short-term assessment of pumped hydro energy storage configurations: Up, down, or closed?," Renewable Energy, Elsevier, vol. 201(P1), pages 1086-1095.
    3. Zafar, Muhammad Wasif & Shahbaz, Muhammad & Hou, Fujun & Sinha, Avik, 2018. "¬¬¬¬¬¬From Nonrenewable to Renewable Energy and Its Impact on Economic Growth: Silver Line of Research & Development Expenditures in APEC Countries," MPRA Paper 90611, University Library of Munich, Germany, revised 10 Dec 2018.
    4. Kenfack, Joseph & Nzotcha, Urbain & Voufo, Joseph & Ngohe-Ekam, Paul Salomon & Nsangou, Jean Calvin & Bignom, Blaise, 2021. "Cameroon's hydropower potential and development under the vision of Central Africa power pool (CAPP): A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    5. Koçak, Emrah & Şarkgüneşi, Aykut, 2017. "The renewable energy and economic growth nexus in Black Sea and Balkan countries," Energy Policy, Elsevier, vol. 100(C), pages 51-57.
    6. Muhammad Razi & Yousaf Ali, 2019. "Ranking renewable energy production methods based on economic and environmental criteria using multi-criteria decision analysis," Environment Systems and Decisions, Springer, vol. 39(2), pages 198-213, June.
    7. Mahfoud, Rabea Jamil & Alkayem, Nizar Faisal & Zhang, Yuquan & Zheng, Yuan & Sun, Yonghui & Alhelou, Hassan Haes, 2023. "Optimal operation of pumped hydro storage-based energy systems: A compendium of current challenges and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    8. Sheng Chen & Jian Zhang & Gaohui Li & Xiaodong Yu, 2019. "Influence Mechanism of Geometric Characteristics of Water Conveyance System on Extreme Water Hammer during Load Rejection in Pumped Storage Plants," Energies, MDPI, vol. 12(15), pages 1-22, July.
    9. Fang, Debin & Zhao, Chaoyang & Kleit, Andrew N., 2019. "The impact of the under enforcement of RPS in China: An evolutionary approach," Energy Policy, Elsevier, vol. 135(C).
    10. Takele Ferede Agajie & Armand Fopah-Lele & Ahmed Ali & Isaac Amoussou & Baseem Khan & Mahmoud Elsisi & Wirnkar Basil Nsanyuy & Om Prakash Mahela & Roberto Marcelo Álvarez & Emmanuel Tanyi, 2023. "Integration of Superconducting Magnetic Energy Storage for Fast-Response Storage in a Hybrid Solar PV-Biogas with Pumped-Hydro Energy Storage Power Plant," Sustainability, MDPI, vol. 15(13), pages 1-30, July.
    11. Hsu-Yung Cheng & Chih-Chang Yu & Kuo-Chang Hsu & Chi-Chang Chan & Mei-Hui Tseng & Chih-Lung Lin, 2019. "Estimating Solar Irradiance on Tilted Surface with Arbitrary Orientations and Tilt Angles," Energies, MDPI, vol. 12(8), pages 1-14, April.
    12. Qyyum, Muhammad Abdul & Dickson, Rofice & Ali Shah, Syed Fahad & Niaz, Haider & Khan, Amin & Liu, J. Jay & Lee, Moonyong, 2021. "Availability, versatility, and viability of feedstocks for hydrogen production: Product space perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    13. Agnieszka Wałachowska & Aranka Ignasiak-Szulc, 2021. "Comparison of Renewable Energy Sources in ‘New’ EU Member States in the Context of National Energy Transformations," Energies, MDPI, vol. 14(23), pages 1-17, November.
    14. Sales-Setién, Ester & Peñarrocha-Alós, Ignacio, 2020. "Robust estimation and diagnosis of wind turbine pitch misalignments at a wind farm level," Renewable Energy, Elsevier, vol. 146(C), pages 1746-1765.
    15. Makhdoomi, Sina & Askarzadeh, Alireza, 2020. "Daily performance optimization of a grid-connected hybrid system composed of photovoltaic and pumped hydro storage (PV/PHS)," Renewable Energy, Elsevier, vol. 159(C), pages 272-285.
    16. Kyriakopoulos, Grigorios L. & Arabatzis, Garyfallos & Tsialis, Panagiotis & Ioannou, Konstantinos, 2018. "Electricity consumption and RES plants in Greece: Typologies of regional units," Renewable Energy, Elsevier, vol. 127(C), pages 134-144.
    17. Piotr Siemiątkowski & Patryk Tomaszewski & Joanna Marszałek-Kawa & Janusz Gierszewski, 2020. "The Financing of Renewable Energy Sources and the Level of Sustainable Development of Poland’s Provinces in the Area of Environmental Order," Energies, MDPI, vol. 13(21), pages 1-19, October.
    18. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    19. Xinxin Liu & Nan Li & Feng Liu & Hailin Mu & Longxi Li & Xiaoyu Liu, 2021. "Optimal Design on Fossil-to-Renewable Energy Transition of Regional Integrated Energy Systems under CO 2 Emission Abatement Control: A Case Study in Dalian, China," Energies, MDPI, vol. 14(10), pages 1-25, May.
    20. Keun-Seob Choi & Jeong-Dong Lee & Chulwoo Baek, 2016. "Growth of De Alio and De Novo firms in the new and renewable energy industry," Industry and Innovation, Taylor & Francis Journals, vol. 23(4), pages 295-312, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:354:y:2024:i:pb:s030626192301615x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.