IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v353y2024ipbs0306261923015519.html
   My bibliography  Save this article

Research on renewable energy coupling system based on medium-deep ground temperature attenuation

Author

Listed:
  • Li, Jianwei
  • Bao, Lingling
  • Niu, Guoqing
  • Miao, Zhuang
  • Guo, Xiaokai
  • Wang, Weilian

Abstract

Medium-deep geothermal has large reserves, a high temperature, a high heat flow density, and other characteristics, but the traditional medium-deep ground heat pump system have long relied on heating from the ground, and soil temperature decreases annually. Using a community building heating system as an example, from a point of view of heat accumulation or not, this article examines the design of a photovoltaic photothermal coupled medium-deep ground source heat pump system (PV/T-GSHP) and a photovoltaic-assisted medium-deep ground source heat pump coupled air source heat pump system (PVGSHP-ASHP). First, the operational performance of a typical GSHP system was compared to that of the PV/T-GSHP and PVGSHP-ASHP systems, both of which were built using TRNSYS. Second, the energy balance and electrical consumption of each system were compared. Finally, the effect of the PV/T-GSHP system’s key parameters and the different ASHP load ratios in the PVGSHP-ASHP system on soil temperature were analyzed. The results showed that after 20 years of operation, the average soil temperature decreased from 38.29 °C to 36.89 °C for the GSHP system, resulting in a decrease in the performance coefficient of the ground source heat pump and the system performance coefficient. The PV/T-GSHP system can address the issue of declining soil temperature with an increase in soil temperature of 0.09 °C. The PVGSHP-ASHP system can mitigate the issue of decreasing soil temperature. The PVGSHP-ASHP system is better than the PV/T-GSHP system in terms of electricity economy. In the PV/T-GSHP system, the larger PV/T component area of similar structures, the smaller flow rate of the heat collector pump, and the volume, inclination, and set temperature of the heat storage tank that are more suitable for the system can achieve higher soil temperatures. As the air-source load ratio increases, the rate at which the soil temperature in the PVGSHP-ASHP system decreases progressively decelerates.

Suggested Citation

  • Li, Jianwei & Bao, Lingling & Niu, Guoqing & Miao, Zhuang & Guo, Xiaokai & Wang, Weilian, 2024. "Research on renewable energy coupling system based on medium-deep ground temperature attenuation," Applied Energy, Elsevier, vol. 353(PB).
  • Handle: RePEc:eee:appene:v:353:y:2024:i:pb:s0306261923015519
    DOI: 10.1016/j.apenergy.2023.122187
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923015519
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122187?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dai, Jiacheng & Li, Jingbin & Wang, Tianyu & Zhu, Liying & Tian, Kangjian & Chen, Zhaoting, 2023. "Thermal performance analysis of coaxial borehole heat exchanger using liquid ammonia," Energy, Elsevier, vol. 263(PE).
    2. Cai, Wanlong & Wang, Fenghao & Chen, Shuang & Chen, Chaofan & Liu, Jun & Deng, Jiewen & Kolditz, Olaf & Shao, Haibing, 2021. "Analysis of heat extraction performance and long-term sustainability for multiple deep borehole heat exchanger array: A project-based study," Applied Energy, Elsevier, vol. 289(C).
    3. Yang, Weibo & Zhang, Heng & Liang, Xingfu, 2018. "Experimental performance evaluation and parametric study of a solar-ground source heat pump system operated in heating modes," Energy, Elsevier, vol. 149(C), pages 173-189.
    4. Li, Ji & Xu, Wei & Li, Jianfeng & Huang, Shuai & Li, Zhao & Qiao, Biao & Yang, Chun & Sun, Deyu & Zhang, Guangqiu, 2021. "Heat extraction model and characteristics of coaxial deep borehole heat exchanger," Renewable Energy, Elsevier, vol. 169(C), pages 738-751.
    5. Martínez-Rodríguez, Guillermo & Baltazar, Juan-Carlos & Fuentes-Silva, Amanda L., 2023. "Heat and electric power production using heat pumps assisted with solar thermal energy for industrial applications," Energy, Elsevier, vol. 282(C).
    6. Mamdouh El Haj Assad & Mohammad Hossein Ahmadi & Milad Sadeghzadeh & Ameera Yassin & Alibek Issakhov, 2021. "Renewable hybrid energy systems using geothermal energy: hybrid solar thermal–geothermal power plant [Solar power technology for electricity generation: A critical review]," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 16(2), pages 518-530.
    7. Violante, Anna Carmela & Donato, Filippo & Guidi, Giambattista & Proposito, Marco, 2022. "Comparative life cycle assessment of the ground source heat pump vs air source heat pump," Renewable Energy, Elsevier, vol. 188(C), pages 1029-1037.
    8. Wang, Zhibao & Wei, Lijie & Zhang, Xiaoping & Qi, Guangzhi, 2023. "Impact of demographic age structure on energy consumption structure: Evidence from population aging in mainland China," Energy, Elsevier, vol. 273(C).
    9. Bildirici, Melike E. & Gökmenoğlu, Seyit M., 2017. "Environmental pollution, hydropower energy consumption and economic growth: Evidence from G7 countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 68-85.
    10. Luo, Yongqiang & Xu, Guozhi & Zhang, Shicong & Cheng, Nan & Tian, Zhiyong & Yu, Jinghua, 2022. "Heat extraction and recover of deep borehole heat exchanger: Negotiating with intermittent operation mode under complex geological conditions," Energy, Elsevier, vol. 241(C).
    11. Cunha, R.P. & Bourne-Webb, P.J., 2022. "A critical review on the current knowledge of geothermal energy piles to sustainably climatize buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    12. Zhu, Jialing & Hu, Kaiyong & Lu, Xinli & Huang, Xiaoxue & Liu, Ketao & Wu, Xiujie, 2015. "A review of geothermal energy resources, development, and applications in China: Current status and prospects," Energy, Elsevier, vol. 93(P1), pages 466-483.
    13. Liu, Long & Zhu, Neng & Zhao, Jing, 2016. "Thermal equilibrium research of solar seasonal storage system coupling with ground-source heat pump," Energy, Elsevier, vol. 99(C), pages 83-90.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Sheng & Liu, Jun & Zhang, Xia & Wang, Fenghao, 2024. "Properly shortening design time scale of medium-deep borehole heat exchanger for high building heating performances with high computational efficiency," Energy, Elsevier, vol. 290(C).
    2. Huang, Shuai & Li, Jiqin & Gao, Hu & Dong, Jiankai & Jiang, Yiqiang, 2024. "Thermal performance of medium-deep U-type borehole heat exchanger based on a novel numerical model considering groundwater seepage," Renewable Energy, Elsevier, vol. 222(C).
    3. Hirvijoki, Eero & Hirvonen, Janne, 2022. "The potential of intermediate-to-deep geothermal boreholes for seasonal storage of district heat," Renewable Energy, Elsevier, vol. 198(C), pages 825-832.
    4. Naili, Nabiha & Kooli, Sami, 2021. "Solar-assisted ground source heat pump system operated in heating mode: A case study in Tunisia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    5. Zhang, Fangfang & Fang, Liang & Jia, Linrui & Man, Yi & Cui, Ping & Zhang, Wenke & Fang, Zhaohong, 2021. "A dimension reduction algorithm for numerical simulation of multi-borehole heat exchangers," Renewable Energy, Elsevier, vol. 179(C), pages 2235-2245.
    6. Luo, Yongqiang & Xu, Guozhi & Zhang, Shicong & Cheng, Nan & Tian, Zhiyong & Yu, Jinghua, 2022. "Heat extraction and recover of deep borehole heat exchanger: Negotiating with intermittent operation mode under complex geological conditions," Energy, Elsevier, vol. 241(C).
    7. Zhang, Fangfang & Yu, Mingzhi & Sørensen, Bjørn R. & Cui, Ping & Zhang, Wenke & Fang, Zhaohong, 2022. "Heat extraction capacity and its attenuation of deep borehole heat exchanger array," Energy, Elsevier, vol. 254(PA).
    8. Song, Xianzhi & Wang, Gaosheng & Shi, Yu & Li, Ruixia & Xu, Zhengming & Zheng, Rui & Wang, Yu & Li, Jiacheng, 2018. "Numerical analysis of heat extraction performance of a deep coaxial borehole heat exchanger geothermal system," Energy, Elsevier, vol. 164(C), pages 1298-1310.
    9. Deng, Jiewen & Peng, Chenwei & Su, Yangyang & Qiang, Wenbo & Cai, Wanlong & Wei, Qingpeng, 2023. "Research on the heat storage characteristic of deep borehole heat exchangers under intermittent operation mode: Simulation analysis and comparative study," Energy, Elsevier, vol. 282(C).
    10. Li, Chao & Jiang, Chao & Guan, Yanling & Tan, Zijing & Zhao, Zhiqiang & Zhou, Yang, 2022. "Development and applicability of heat transfer analytical model for coaxial-type deep-buried pipes," Energy, Elsevier, vol. 255(C).
    11. Wenjing Li & Wenke Zhang & Zhenxing Li & Haiqing Yao & Ping Cui & Fangfang Zhang, 2022. "Investigation of the Heat Transfer Performance of Multi-Borehole Double-Pipe Heat Exchangers in Medium-Shallow Strata," Energies, MDPI, vol. 15(13), pages 1-19, June.
    12. Huang, Shuai & Zhu, Ke & Dong, Jiankai & Li, Ji & Kong, Weizheng & Jiang, Yiqiang & Fang, Zhaohong, 2022. "Heat transfer performance of deep borehole heat exchanger with different operation modes," Renewable Energy, Elsevier, vol. 193(C), pages 645-656.
    13. Niu, Qinghe & Ma, Kaiyuan & Wang, Wei & Pan, Jienan & Wang, Qizhi & Du, Zhigang & Wang, Zhenzhi & Yuan, Wei & Zheng, Yongxiang & Shangguan, Shuantong & Qi, Xiaofei & Pan, Miaomiao & Ji, Zhongmin, 2023. "Multifactor analysis of heat extraction performance of coaxial heat exchanger applied to hot dry rock resources exploration: A case study in matouying uplift, Tangshan, China," Energy, Elsevier, vol. 282(C).
    14. Cao, Jingyu & Zheng, Ling & Peng, Jinqing & Wang, Wenjie & Leung, Michael K.H. & Zheng, Zhanying & Hu, Mingke & Wang, Qiliang & Cai, Jingyong & Pei, Gang & Ji, Jie, 2023. "Advances in coupled use of renewable energy sources for performance enhancement of vapour compression heat pump: A systematic review of applications to buildings," Applied Energy, Elsevier, vol. 332(C).
    15. Akan, Taner & Gündüz, Halil İbrahim & Emirmahmutoğlu, Furkan & Işık, Ali Haydar, 2023. "Disaggregating renewable energy-growth nexus: W-ARDL and W-Toda-Yamamoto approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    16. Ramadan, Mohamad & Murr, Rabih & Khaled, Mahmoud & Olabi, Abdul Ghani, 2018. "Mixed numerical - Experimental approach to enhance the heat pump performance by drain water heat recovery," Energy, Elsevier, vol. 149(C), pages 1010-1021.
    17. Ryu, Jun & Bahadur, Jitendra & Hayase, Shuzi & Jeong, Sang Mun & Kang, Dong-Won, 2023. "Efficient and stable energy conversion using 2D/3D mixed Sn-perovskite photovoltaics with antisolvent engineering," Energy, Elsevier, vol. 278(PB).
    18. Luo, Jin & Zhang, Qi & Liang, Changming & Wang, Haiqi & Ma, Xinning, 2023. "An overview of the recent development of the Ground Source Heat Pump (GSHP) system in China," Renewable Energy, Elsevier, vol. 210(C), pages 269-279.
    19. Dejian Yu & Sun Meng, 2018. "An overview of biomass energy research with bibliometric indicators," Energy & Environment, , vol. 29(4), pages 576-590, June.
    20. Lin, Ling & Zhou, Zhongbao & Jiang, Yong & Ou, Yangchen, 2021. "Risk spillovers and hedge strategies between global crude oil markets and stock markets: Do regime switching processes combining long memory and asymmetry matter?," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:353:y:2024:i:pb:s0306261923015519. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.