IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v350y2023ics0306261923010772.html
   My bibliography  Save this article

A robust planning model for offshore microgrid considering tidal power and desalination

Author

Listed:
  • Wang, Zhimeng
  • Xuan, Ang
  • Shen, Xinwei
  • Du, Yunfei
  • Sun, Hongbin

Abstract

Increasing attention has been paid to resources on islands, thus microgrids on islands need to be invested. Different from onshore microgrids, offshore microgrids (OM) are usually abundant in ocean renewable energy (ORE), such as offshore wind, tidal power generation (TPG), etc. Moreover, some special loads such as seawater desalination unit (SDU) should be included. In this sense, this paper proposes a planning method for OM to minimize the investment cost while the ORE’s fluctuation could be accommodated with robustness. First, a deterministic planning model (DPM) is formulated for the OM with TPG and SDU. A robust planning model (RPM) is then developed considering the uncertainties from both TPG and load demand. The Column-and-constraint generation (C&CG) algorithm is then employed to solve the RPM, producing planning results for the OM that is robust against the worst scenario. Results of the case studies show that the investment and operation decisions of the proposed model are robust, and TPG shows good complementarity with the other RESs.

Suggested Citation

  • Wang, Zhimeng & Xuan, Ang & Shen, Xinwei & Du, Yunfei & Sun, Hongbin, 2023. "A robust planning model for offshore microgrid considering tidal power and desalination," Applied Energy, Elsevier, vol. 350(C).
  • Handle: RePEc:eee:appene:v:350:y:2023:i:c:s0306261923010772
    DOI: 10.1016/j.apenergy.2023.121713
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923010772
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121713?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Quashie, Mike & Marnay, Chris & Bouffard, François & Joós, Géza, 2018. "Optimal planning of microgrid power and operating reserve capacity," Applied Energy, Elsevier, vol. 210(C), pages 1229-1236.
    2. Narayan, Apurva & Ponnambalam, Kumaraswamy, 2017. "Risk-averse stochastic programming approach for microgrid planning under uncertainty," Renewable Energy, Elsevier, vol. 101(C), pages 399-408.
    3. Guevara, Esnil & Babonneau, Fréderic & Homem-de-Mello, Tito & Moret, Stefano, 2020. "A machine learning and distributionally robust optimization framework for strategic energy planning under uncertainty," Applied Energy, Elsevier, vol. 271(C).
    4. Hu, Chenlian & Liu, Xiao & Lu, Jie & Wang, Chi-Hwa, 2020. "Distributionally robust optimization for power trading of waste-to-energy plants under uncertainty," Applied Energy, Elsevier, vol. 276(C).
    5. Sleiti, Ahmad K., 2017. "Tidal power technology review with potential applications in Gulf Stream," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 435-441.
    6. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    7. Dimitris Bertsimas & Melvyn Sim & Meilin Zhang, 2019. "Adaptive Distributionally Robust Optimization," Management Science, INFORMS, vol. 65(2), pages 604-618, February.
    8. Yang, Dongfeng & Jiang, Chao & Cai, Guowei & Yang, Deyou & Liu, Xiaojun, 2020. "Interval method based optimal planning of multi-energy microgrid with uncertain renewable generation and demand," Applied Energy, Elsevier, vol. 277(C).
    9. Qiu, Haifeng & Gu, Wei & Pan, Jing & Xu, Bin & Xu, Yinliang & Fan, Miao & Wu, Zhi, 2018. "Multi-interval-uncertainty constrained robust dispatch for AC/DC hybrid microgrids with dynamic energy storage degradation," Applied Energy, Elsevier, vol. 228(C), pages 205-214.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiu, Haifeng & Gu, Wei & Liu, Pengxiang & Sun, Qirun & Wu, Zhi & Lu, Xi, 2022. "Application of two-stage robust optimization theory in power system scheduling under uncertainties: A review and perspective," Energy, Elsevier, vol. 251(C).
    2. Zhi Chen & Melvyn Sim & Huan Xu, 2019. "Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets," Operations Research, INFORMS, vol. 67(5), pages 1328-1344, September.
    3. Zhang, Liu & Zhang, Kaitian & Zheng, Zhong & Chai, Yi & Lian, Xiaoyuan & Zhang, Kai & Xu, Zhaojun & Chen, Sujun, 2023. "Two-stage distributionally robust integrated scheduling of oxygen distribution and steelmaking-continuous casting in steel enterprises," Applied Energy, Elsevier, vol. 351(C).
    4. Xie, Chen & Wang, Liangquan & Yang, Chaolin, 2021. "Robust inventory management with multiple supply sources," European Journal of Operational Research, Elsevier, vol. 295(2), pages 463-474.
    5. Wang, Fan & Zhang, Chao & Zhang, Hui & Xu, Liang, 2021. "Short-term physician rescheduling model with feature-driven demand for mental disorders outpatients," Omega, Elsevier, vol. 105(C).
    6. Chen, Qingxin & Ma, Shoufeng & Li, Hongming & Zhu, Ning & He, Qiao-Chu, 2024. "Optimizing bike rebalancing strategies in free-floating bike-sharing systems: An enhanced distributionally robust approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 184(C).
    7. Moret, Stefano & Babonneau, Frédéric & Bierlaire, Michel & Maréchal, François, 2020. "Overcapacity in European power systems: Analysis and robust optimization approach," Applied Energy, Elsevier, vol. 259(C).
    8. Tianqi Liu & Francisco Saldanha-da-Gama & Shuming Wang & Yuchen Mao, 2022. "Robust Stochastic Facility Location: Sensitivity Analysis and Exact Solution," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2776-2803, September.
    9. Yu Wang & Yu Zhang & Minglong Zhou & Jiafu Tang, 2023. "Feature‐driven robust surgery scheduling," Production and Operations Management, Production and Operations Management Society, vol. 32(6), pages 1921-1938, June.
    10. Yu, Vincent F. & Le, Thi Huynh Anh & Gupta, Jatinder N.D., 2023. "Sustainable microgrid design with peer-to-peer energy trading involving government subsidies and uncertainties," Renewable Energy, Elsevier, vol. 206(C), pages 658-675.
    11. Guo, Xiaotong & Caros, Nicholas S. & Zhao, Jinhua, 2021. "Robust matching-integrated vehicle rebalancing in ride-hailing system with uncertain demand," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 161-189.
    12. Wang, Congke & Liu, Yankui & Yang, Guoqing, 2023. "Adaptive distributionally robust hub location and routing problem with a third-party logistics strategy," Socio-Economic Planning Sciences, Elsevier, vol. 87(PA).
    13. Yang, Xiaohui & Chen, Zaixing & Huang, Xin & Li, Ruixin & Xu, Shaoping & Yang, Chunsheng, 2021. "Robust capacity optimization methods for integrated energy systems considering demand response and thermal comfort," Energy, Elsevier, vol. 221(C).
    14. He, Shuaijia & Gao, Hongjun & Wang, Lingfeng & Xiang, Yingmeng & Liu, Junyong, 2020. "Distributionally robust planning for integrated energy systems incorporating electric-thermal demand response," Energy, Elsevier, vol. 213(C).
    15. Haolin Ruan & Zhi Chen & Chin Pang Ho, 2023. "Adjustable Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1002-1023, September.
    16. Georgia Perakis & Melvyn Sim & Qinshen Tang & Peng Xiong, 2023. "Robust Pricing and Production with Information Partitioning and Adaptation," Management Science, INFORMS, vol. 69(3), pages 1398-1419, March.
    17. Rahim, Sahar & Wang, Zhen & Ju, Ping, 2022. "Overview and applications of Robust optimization in the avant-garde energy grid infrastructure: A systematic review," Applied Energy, Elsevier, vol. 319(C).
    18. de Oliveira, Glauber Cardoso & Bertone, Edoardo & Stewart, Rodney A., 2022. "Optimisation modelling tools and solving techniques for integrated precinct-scale energy–water system planning," Applied Energy, Elsevier, vol. 318(C).
    19. Zhi Chen & Peng Xiong, 2023. "RSOME in Python: An Open-Source Package for Robust Stochastic Optimization Made Easy," INFORMS Journal on Computing, INFORMS, vol. 35(4), pages 717-724, July.
    20. Feng Liu & Zhi Chen & Shuming Wang, 2023. "Globalized Distributionally Robust Counterpart," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1120-1142, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:350:y:2023:i:c:s0306261923010772. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.