IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v307y2022ics0306261921014860.html
   My bibliography  Save this article

Real-time emergency load shedding for power system transient stability control: A risk-averse deep learning method

Author

Listed:
  • Liu, Jizhe
  • Zhang, Yuchen
  • Meng, Ke
  • Dong, Zhao Yang
  • Xu, Yan
  • Han, Siming

Abstract

Emergency load shedding is an effective and frequently used emergency control action for power system transient stability. Solving the full optimization models for load shedding is computational burdensome and thus slow react to the intense system variations from the increasing renewable energy sources and the more active demand-side behavior. Other sensitivity-based methods impair the control accuracy and may not guarantee global optimality. Artificial intelligence methods, as the data-driven approaches, have recently been well-recognized for its real-time decision-making capability to tackle the system variations. The existing artificial intelligence methods for emergency load shedding are based on shallow learning algorithms and can lead to both load under-cutting and over-cutting events. However, when the loads are under-cut, the power system will be exposed to a high risk of post-control instability that can propagate into cascading events, which incurs significantly higher cost than an over-cutting event. Being aware of such unbalanced control costs, this paper proposes a risk-averse deep learning method for real-time emergency load shedding, which trains deep neural network towards the reluctance to load under-cutting events, so as to avoid the huge control cost incurred by control failure. The case studies on two renewable power systems demonstrate that, compared to the state-of-the-art methods, the proposed risk-averse method can significantly improve the control success rate with negligible increase in prediction error, ending up with lower overall control cost. The results verify the enhanced control performance and the practical values of the proposed method.

Suggested Citation

  • Liu, Jizhe & Zhang, Yuchen & Meng, Ke & Dong, Zhao Yang & Xu, Yan & Han, Siming, 2022. "Real-time emergency load shedding for power system transient stability control: A risk-averse deep learning method," Applied Energy, Elsevier, vol. 307(C).
  • Handle: RePEc:eee:appene:v:307:y:2022:i:c:s0306261921014860
    DOI: 10.1016/j.apenergy.2021.118221
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921014860
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.118221?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Chao & Yin, Wanjun & Wen, Tao, 2024. "An advanced multi-objective collaborative scheduling strategy for large scale EV charging and discharging connected to the predictable wind power grid," Energy, Elsevier, vol. 287(C).
    2. Shi, Zhongtuo & Yao, Wei & Zhao, Yifan & Ai, Xiaomeng & Wen, Jinyu & Cheng, Shijie, 2024. "Two-stage weakly supervised learning to mitigate label noise for intelligent identification of power system dominant instability mode," Applied Energy, Elsevier, vol. 359(C).
    3. Li, Yangyang & Zhou, Shi & Liu, Jingping & Tong, Ji & Dang, Jian & Yang, Fuyuan & Ouyang, Minggao, 2023. "Multi-objective optimization of the Atkinson cycle gasoline engine using NSGA Ⅲ coupled with support vector machine and back-propagation algorithm," Energy, Elsevier, vol. 262(PA).
    4. Meng, Yan & Fan, Shuai & Shen, Yu & Xiao, Jucheng & He, Guangyu & Li, Zuyi, 2023. "Transmission and distribution network-constrained large-scale demand response based on locational customer directrix load for accommodating renewable energy," Applied Energy, Elsevier, vol. 350(C).
    5. Luo, Zhiqiang & Liu, Hui & Wang, Ni & Zhao, Teyang & Tian, Jiarui, 2024. "Optimal adaptive decentralized under-frequency load shedding for islanded smart distribution network considering wind power uncertainty," Applied Energy, Elsevier, vol. 365(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:307:y:2022:i:c:s0306261921014860. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.