Real-time emergency load shedding for power system transient stability control: A risk-averse deep learning method
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2021.118221
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhang, Chao & Yin, Wanjun & Wen, Tao, 2024. "An advanced multi-objective collaborative scheduling strategy for large scale EV charging and discharging connected to the predictable wind power grid," Energy, Elsevier, vol. 287(C).
- Shi, Zhongtuo & Yao, Wei & Zhao, Yifan & Ai, Xiaomeng & Wen, Jinyu & Cheng, Shijie, 2024. "Two-stage weakly supervised learning to mitigate label noise for intelligent identification of power system dominant instability mode," Applied Energy, Elsevier, vol. 359(C).
- Li, Yangyang & Zhou, Shi & Liu, Jingping & Tong, Ji & Dang, Jian & Yang, Fuyuan & Ouyang, Minggao, 2023. "Multi-objective optimization of the Atkinson cycle gasoline engine using NSGA Ⅲ coupled with support vector machine and back-propagation algorithm," Energy, Elsevier, vol. 262(PA).
- Meng, Yan & Fan, Shuai & Shen, Yu & Xiao, Jucheng & He, Guangyu & Li, Zuyi, 2023. "Transmission and distribution network-constrained large-scale demand response based on locational customer directrix load for accommodating renewable energy," Applied Energy, Elsevier, vol. 350(C).
- Luo, Zhiqiang & Liu, Hui & Wang, Ni & Zhao, Teyang & Tian, Jiarui, 2024. "Optimal adaptive decentralized under-frequency load shedding for islanded smart distribution network considering wind power uncertainty," Applied Energy, Elsevier, vol. 365(C).
More about this item
Keywords
Deep learning; Emergency load shedding; Extended equal-area criterion; Power system stability; Renewable energy; Risk-averse learning;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:307:y:2022:i:c:s0306261921014860. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.