IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v271y2020ics0306261920307339.html
   My bibliography  Save this article

Optimization of China’s electric power sector targeting water stress and carbon emissions

Author

Listed:
  • Zhang, Yiyi
  • Wang, Jiaqi
  • Zhang, Linmei
  • Liu, Jiefeng
  • Zheng, Hanbo
  • Fang, Jiake
  • Hou, Shengren
  • Chen, Shaoqing

Abstract

Electric power sector is a significant water consumer and a major source of carbon emissions in China. Optimizing electricity mix is critical for maintaining a stable energy supply while addressing water stress and carbon emissions associated with power generation. In this study, we developed an optimization model with the dual objectives of mitigating the risk of water scarcity and cutting carbon emissions, by adjusting the electricity mix and power generation tasks of provincial grids. Using the weighted sum method, the optimization of grids is simulated based on a scenario analysis within specified equality and boundary constraints. We quantified the impact of the spatial distribution of thermal power and power generated from clean energies (hydropower, wind power, nuclear power, and solar power) on virtual water consumption and carbon emissions at a provincial level in China. The results suggested that transferring part of power generation tasks from water-deficient areas (e.g., Shandong and Jiangsu) to water-sufficient areas (e.g., Yunnan and Guangdong) could significantly mitigate water scarcity. Water consumption of power generation could be reduced by 34.7% in highly water-deficient areas if a water-prioritized scenario is implemented. Carbon emissions related to power generation could be reduced nationwide under a carbon-prioritized scenario and a water-carbon-balanced scenario. This model could provide a synergistic perspective for improving regional water and carbon performances based on changes in electricity mix.

Suggested Citation

  • Zhang, Yiyi & Wang, Jiaqi & Zhang, Linmei & Liu, Jiefeng & Zheng, Hanbo & Fang, Jiake & Hou, Shengren & Chen, Shaoqing, 2020. "Optimization of China’s electric power sector targeting water stress and carbon emissions," Applied Energy, Elsevier, vol. 271(C).
  • Handle: RePEc:eee:appene:v:271:y:2020:i:c:s0306261920307339
    DOI: 10.1016/j.apenergy.2020.115221
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920307339
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115221?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cristóbal, Jorge & Guillén-Gosálbez, Gonzalo & Jiménez, Laureano & Irabien, Angel, 2012. "Multi-objective optimization of coal-fired electricity production with CO2 capture," Applied Energy, Elsevier, vol. 98(C), pages 266-272.
    2. Fang, Delin & Chen, Bin, 2018. "Linkage analysis for water-carbon nexus in China," Applied Energy, Elsevier, vol. 225(C), pages 682-695.
    3. Wang, Lu & Wei, Yi-Ming & Brown, Marilyn A., 2017. "Global transition to low-carbon electricity: A bibliometric analysis," Applied Energy, Elsevier, vol. 205(C), pages 57-68.
    4. Feng, Kuishuang & Hubacek, Klaus & Siu, Yim Ling & Li, Xin, 2014. "The energy and water nexus in Chinese electricity production: A hybrid life cycle analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 342-355.
    5. Li, Xin & Feng, Kuishuang & Siu, Yim Ling & Hubacek, Klaus, 2012. "Energy-water nexus of wind power in China: The balancing act between CO2 emissions and water consumption," Energy Policy, Elsevier, vol. 45(C), pages 440-448.
    6. Yang, Lisha & Lin, Boqiang, 2016. "Carbon dioxide-emission in China׳s power industry: Evidence and policy implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 258-267.
    7. Wang, Xue-Chao & Klemeš, Jiří Jaromír & Wang, Yutao & Dong, Xiaobin & Wei, Hejie & Xu, Zihan & Varbanov, Petar Sabev, 2020. "Water-Energy-Carbon Emissions nexus analysis of China: An environmental input-output model-based approach," Applied Energy, Elsevier, vol. 261(C).
    8. Tsolas, Spyridon D. & Karim, M. Nazmul & Hasan, M.M. Faruque, 2018. "Optimization of water-energy nexus: A network representation-based graphical approach," Applied Energy, Elsevier, vol. 224(C), pages 230-250.
    9. Liao, Xiawei & Zhao, Xu & Hall, Jim W. & Guan, Dabo, 2018. "Categorising virtual water transfers through China’s electric power sector," Applied Energy, Elsevier, vol. 226(C), pages 252-260.
    10. Pratama, Yoga Wienda & Purwanto, Widodo Wahyu & Tezuka, Tetsuo & McLellan, Benjamin Craig & Hartono, Djoni & Hidayatno, Akhmad & Daud, Yunus, 2017. "Multi-objective optimization of a multiregional electricity system in an archipelagic state: The role of renewable energy in energy system sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 423-439.
    11. Dong, Jun & Feng, Tian-tian & Sun, Hong-xing & Cai, Hong-xin & Li, Rong & Yang, Yisheng, 2016. "Clean distributed generation in China: Policy options and international experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 753-764.
    12. Wang, Saige & Liu, Yating & Chen, Bin, 2018. "Multiregional input–output and ecological network analyses for regional energy–water nexus within China," Applied Energy, Elsevier, vol. 227(C), pages 353-364.
    13. Meng, Fanxin & Liu, Gengyuan & Chang, Yuan & Su, Meirong & Hu, Yuanchao & Yang, Zhifeng, 2019. "Quantification of urban water-carbon nexus using disaggregated input-output model: A case study in Beijing (China)," Energy, Elsevier, vol. 171(C), pages 403-418.
    14. Guo, Ruipeng & Zhu, Xiaojie & Chen, Bin & Yue, Yunli, 2016. "Ecological network analysis of the virtual water network within China’s electric power system during 2007–2012," Applied Energy, Elsevier, vol. 168(C), pages 110-121.
    15. Zhang, Qi & Mclellan, Benjamin C. & Tezuka, Tetsuo & Ishihara, Keiichi N., 2013. "An integrated model for long-term power generation planning toward future smart electricity systems," Applied Energy, Elsevier, vol. 112(C), pages 1424-1437.
    16. Yuan, Rong & Behrens, Paul & Tukker, Arnold & Rodrigues, João F.D., 2018. "Carbon overhead: The impact of the expansion in low-carbon electricity in China 2015–2040," Energy Policy, Elsevier, vol. 119(C), pages 97-104.
    17. Zhai, Mengyu & Huang, Guohe & Liu, Lirong & Zheng, Boyue & Guan, Yuru, 2020. "Inter-regional carbon flows embodied in electricity transmission: network simulation for energy-carbon nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    18. Li, Lili & Taeihagh, Araz, 2020. "An in-depth analysis of the evolution of the policy mix for the sustainable energy transition in China from 1981 to 2020," Applied Energy, Elsevier, vol. 263(C).
    19. Sharifzadeh, Mahdi & Hien, Raymond Khoo Teck & Shah, Nilay, 2019. "China’s roadmap to low-carbon electricity and water: Disentangling greenhouse gas (GHG) emissions from electricity-water nexus via renewable wind and solar power generation, and carbon capture and sto," Applied Energy, Elsevier, vol. 235(C), pages 31-42.
    20. Mileva, Ana & Johnston, Josiah & Nelson, James H. & Kammen, Daniel M., 2016. "Power system balancing for deep decarbonization of the electricity sector," Applied Energy, Elsevier, vol. 162(C), pages 1001-1009.
    21. Liu, Yitong & Chen, Bin & Wei, Wendong & Shao, Ling & Li, Zhi & Jiang, Weizhong & Chen, Guoqian, 2020. "Global water use associated with energy supply, demand and international trade of China," Applied Energy, Elsevier, vol. 257(C).
    22. Zhu, Xiaojie & Guo, Ruipeng & Chen, Bin & Zhang, Jing & Hayat, Tasawar & Alsaedi, Ahmed, 2015. "Embodiment of virtual water of power generation in the electric power system in China," Applied Energy, Elsevier, vol. 151(C), pages 345-354.
    23. Chen, Shaoqing & Chen, Bin, 2016. "Urban energy–water nexus: A network perspective," Applied Energy, Elsevier, vol. 184(C), pages 905-914.
    24. Wang, Yongpei & Yan, Weilong & Zhuang, Shangwen & Zhang, Qian, 2019. "Competition or complementarity ? The hydropower and thermal power nexus in China," Renewable Energy, Elsevier, vol. 138(C), pages 531-541.
    25. Muis, Z.A. & Hashim, H. & Manan, Z.A. & Taha, F.M. & Douglas, P.L., 2010. "Optimal planning of renewable energy-integrated electricity generation schemes with CO2 reduction target," Renewable Energy, Elsevier, vol. 35(11), pages 2562-2570.
    26. Zhang, Yiyi & Fang, Jiake & Wang, Saige & Yao, Huilu, 2020. "Energy-water nexus in electricity trade network: A case study of interprovincial electricity trade in China," Applied Energy, Elsevier, vol. 257(C).
    27. Zhang, Chao & Zhong, Lijin & Liang, Sai & Sanders, Kelly T. & Wang, Jiao & Xu, Ming, 2017. "Virtual scarce water embodied in inter-provincial electricity transmission in China," Applied Energy, Elsevier, vol. 187(C), pages 438-448.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guo, Jian-Xin & Zhu, Kaiwei & Tan, Xianchun & Gu, Baihe, 2021. "Low-carbon technology development under multiple adoption risks," Technological Forecasting and Social Change, Elsevier, vol. 172(C).
    2. Qin, Pengcheng & Xu, Hongmei & Liu, Min & Xiao, Chan & Forrest, Kate E. & Samuelsen, Scott & Tarroja, Brian, 2020. "Assessing concurrent effects of climate change on hydropower supply, electricity demand, and greenhouse gas emissions in the Upper Yangtze River Basin of China," Applied Energy, Elsevier, vol. 279(C).
    3. Xu, Zhongwen & Tan, Shiqi & Yao, Liming & Lv, Chengwei, 2024. "Exploring water-saving potentials of US electric power transition while thirsting for carbon neutrality," Energy, Elsevier, vol. 292(C).
    4. Zhang, Xiaoyue & Huang, Guohe & Liu, Lirong & Li, Kailong, 2022. "Development of a stochastic multistage lifecycle programming model for electric power system planning – A case study for the Province of Saskatchewan, Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    5. Cano-Rodríguez, Sara & Rubio-Varas, Mar & Sesma-Martín, Diego, 2022. "At the crossroad between green and thirsty: Carbon emissions and water consumption of Spanish thermoelectricity generation, 1969–2019," Ecological Economics, Elsevier, vol. 195(C).
    6. Jin, Yi & Behrens, Paul & Tukker, Arnold & Scherer, Laura, 2021. "The energy-water nexus of China’s interprovincial and seasonal electric power transmission," Applied Energy, Elsevier, vol. 286(C).
    7. Zhang, Yiyi & Hou, Shengren & Chen, Shaoqing & Long, Huihui & Liu, Jiefeng & Wang, Jiaqi, 2021. "Tracking flows and network dynamics of virtual water in electricity transmission across China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    8. Erdong Zhao & Jianmin Chen & Junmei Lan & Liwei Liu, 2024. "Power Generation Mix Optimization under Auction Mechanism for Carbon Emission Rights," Energies, MDPI, vol. 17(3), pages 1-24, January.
    9. Ren, Xiaojun & Wu, Yongtang & Hao, Dongmin & Liu, Guoxu & Zafetti, Nicholas, 2021. "Analysis of the performance of the multi-objective hybrid hydropower-photovoltaic-wind system to reduce variance and maximum power generation by developed owl search algorithm," Energy, Elsevier, vol. 231(C).
    10. Jixian Cui & Chenghao Liao & Ling Ji & Yulei Xie & Yangping Yu & Jianguang Yin, 2021. "A Short-Term Hybrid Energy System Robust Optimization Model for Regional Electric-Power Capacity Development Planning under Different Pollutant Control Pressures," Sustainability, MDPI, vol. 13(20), pages 1-20, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Yitong & Chen, Bin & Wei, Wendong & Shao, Ling & Li, Zhi & Jiang, Weizhong & Chen, Guoqian, 2020. "Global water use associated with energy supply, demand and international trade of China," Applied Energy, Elsevier, vol. 257(C).
    2. Yiyi Zhang & Shengren Hou & Jiefeng Liu & Hanbo Zheng & Jiaqi Wang & Chaohai Zhang, 2020. "Evolution of Virtual Water Transfers in China’s Provincial Grids and Its Driving Analysis," Energies, MDPI, vol. 13(2), pages 1-19, January.
    3. Sharifzadeh, Mahdi & Hien, Raymond Khoo Teck & Shah, Nilay, 2019. "China’s roadmap to low-carbon electricity and water: Disentangling greenhouse gas (GHG) emissions from electricity-water nexus via renewable wind and solar power generation, and carbon capture and sto," Applied Energy, Elsevier, vol. 235(C), pages 31-42.
    4. Zhang, Yiyi & Hou, Shengren & Chen, Shaoqing & Long, Huihui & Liu, Jiefeng & Wang, Jiaqi, 2021. "Tracking flows and network dynamics of virtual water in electricity transmission across China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    5. Li, Junjie & Yan, Yulong & Wang, Yirong & Zhang, Yifu & Shao, Lianwei & Li, Menggang, 2024. "Spatial-successive transfer of virtual scarcity water along China's coal-based electric chain," Energy, Elsevier, vol. 288(C).
    6. Zhang, Yiyi & Fang, Jiake & Wang, Saige & Yao, Huilu, 2020. "Energy-water nexus in electricity trade network: A case study of interprovincial electricity trade in China," Applied Energy, Elsevier, vol. 257(C).
    7. Zhao, Yuhuan & Shi, Qiaoling & li, Hao & Qian, Zhiling & Zheng, Lu & Wang, Song & He, Yizhang, 2022. "Simulating the economic and environmental effects of integrated policies in energy-carbon-water nexus of China," Energy, Elsevier, vol. 238(PA).
    8. Jin, Yi & Behrens, Paul & Tukker, Arnold & Scherer, Laura, 2021. "The energy-water nexus of China’s interprovincial and seasonal electric power transmission," Applied Energy, Elsevier, vol. 286(C).
    9. Meng, Fanxin & Liu, Gengyuan & Liang, Sai & Su, Meirong & Yang, Zhifeng, 2019. "Critical review of the energy-water-carbon nexus in cities," Energy, Elsevier, vol. 171(C), pages 1017-1032.
    10. Yan, Xia & Jie, Wu & Minjun, Shi & Shouyang, Wang & Zhuoying, Zhang, 2022. "China's regional imbalance in electricity demand, power and water pricing - From the perspective of electricity-related virtual water transmission," Energy, Elsevier, vol. 257(C).
    11. Ana Luiza Fontenelle & Erik Nilsson & Ieda Geriberto Hidalgo & Cintia B. Uvo & Drielli Peyerl, 2022. "Temporal Understanding of the Water–Energy Nexus: A Literature Review," Energies, MDPI, vol. 15(8), pages 1-21, April.
    12. Fang, Delin & Chen, Bin, 2018. "Linkage analysis for water-carbon nexus in China," Applied Energy, Elsevier, vol. 225(C), pages 682-695.
    13. Chu, Chu & Ritter, William & Sun, Xiaohui, 2019. "Spatial variances of water-energy nexus in China and its implications for provincial resource interdependence," Energy Policy, Elsevier, vol. 125(C), pages 487-502.
    14. Jin, Yi & Behrens, Paul & Tukker, Arnold & Scherer, Laura, 2019. "Water use of electricity technologies: A global meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    15. Li, Mingquan & Dai, Hancheng & Xie, Yang & Tao, Ye & Bregnbaek, Lars & Sandholt, Kaare, 2017. "Water conservation from power generation in China: A provincial level scenario towards 2030," Applied Energy, Elsevier, vol. 208(C), pages 580-591.
    16. Wang, Like & Fan, Yee Van & Jiang, Peng & Varbanov, Petar Sabev & Klemeš, Jiří Jaromír, 2021. "Virtual water and CO2 emission footprints embodied in power trade: EU-27," Energy Policy, Elsevier, vol. 155(C).
    17. Jin, Yi & Tang, Xu & Feng, Cuiyang & Höök, Mikael, 2017. "Energy and water conservation synergy in China: 2007–2012," Resources, Conservation & Recycling, Elsevier, vol. 127(C), pages 206-215.
    18. Yuan, Rong & Rodrigues, João F.D. & Tukker, Arnold & Behrens, Paul, 2018. "The impact of the expansion in non-fossil electricity infrastructure on China’s carbon emissions," Applied Energy, Elsevier, vol. 228(C), pages 1994-2008.
    19. Cai, Beiming & Jiang, Ling & Liu, Yu & Wang, Feng & Zhang, Wei & Yan, Xu & Ge, Zhenzi, 2023. "Regional trends and socioeconomic drivers of energy-related water use in China from 2007 to 2017," Energy, Elsevier, vol. 275(C).
    20. Ding, Tao & Liang, Liang & Zhou, Kaile & Yang, Min & Wei, Yuqi, 2020. "Water-energy nexus: The origin, development and prospect," Ecological Modelling, Elsevier, vol. 419(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:271:y:2020:i:c:s0306261920307339. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.