IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v255y2019ics030626191931517x.html
   My bibliography  Save this article

Synthesis and characterization of microencapsulated sodium sulfate decahydrate as phase change energy storage materials

Author

Listed:
  • Zhang, Zhishan
  • Lian, Yadong
  • Xu, Xibin
  • Xu, Xiaonong
  • Fang, Guiyin
  • Gu, Min

Abstract

Sodium sulfate decahydrate has been microencapsulated within a silica shell through a novel method of reverse micellization and emulsion polymerization. Tetraethoxysilane and 3-aminopropyl-triethoxysilane were used in conjunction as silicon precursors to form the silica shell, which encapsulated sodium sulfate decahydrate as a phase change material for thermal energy storage. The melting and solidifying temperatures of the microcapsules were measured as 33.6 °C and 6.0 °C, respectively, with associated latent heats of 125.6 kJ/kg and 74.0 kJ/kg. The phase segregation of various hydrate salts was inhibited by the confining effect of the silica mesopores. The size of the microcapsules could be regulated from 500 nm to 28 μm simply by reducing the amount of surfactant (Triton X-100) deployed as a stabilizer. Confined by SiO2 matrix, heat storage properties of the hydrate salts were greatly improved. Sodium sulfate decahydrate microencapsulated within a silica shell is shown to be suitable for application in thermal energy storage.

Suggested Citation

  • Zhang, Zhishan & Lian, Yadong & Xu, Xibin & Xu, Xiaonong & Fang, Guiyin & Gu, Min, 2019. "Synthesis and characterization of microencapsulated sodium sulfate decahydrate as phase change energy storage materials," Applied Energy, Elsevier, vol. 255(C).
  • Handle: RePEc:eee:appene:v:255:y:2019:i:c:s030626191931517x
    DOI: 10.1016/j.apenergy.2019.113830
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191931517X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.113830?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cong, L. & Zou, B. & Palacios, A. & Navarro, M.E. & Qiao, G. & Ding, Y., 2022. "Thickening and gelling agents for formulation of thermal energy storage materials – A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    2. B. Kalidasan & A. K. Pandey & Saidur Rahman & Kamal Sharma & V. V. Tyagi, 2023. "Experimental Investigation of Graphene Nanoplatelets Enhanced Low Temperature Ternary Eutectic Salt Hydrate Phase Change Material," Energies, MDPI, vol. 16(4), pages 1-17, February.
    3. Edyta Nartowska & Marta Styś-Maniara & Tomasz Kozłowski, 2023. "The Potential Environmental and Social Influence of the Inorganic Salt Hydrates Used as a Phase Change Material for Thermal Energy Storage in Solar Installations," IJERPH, MDPI, vol. 20(2), pages 1-21, January.
    4. Lin, Niangzhi & Li, Chuanchang & Zhang, Dongyao & Li, Yaxi & Chen, Jian, 2022. "Emerging phase change cold storage materials derived from sodium sulfate decahydrate," Energy, Elsevier, vol. 245(C).
    5. Li, Mu & Li, Chuanchang & Xie, Baoshan & Cao, Penghui & Liu, Daifei & Li, Yaxi & Peng, Meicheng & Tan, Zhenwei, 2023. "Emerging phase change cold storage gel originated from calcium chloride hexahydrate," Energy, Elsevier, vol. 284(C).
    6. Ewelina Radomska & Lukasz Mika & Karol Sztekler, 2020. "The Impact of Additives on the Main Properties of Phase Change Materials," Energies, MDPI, vol. 13(12), pages 1-34, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:255:y:2019:i:c:s030626191931517x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.