Flame-treated and fast-assembled foam system for direct solar steam generation and non-plugging high salinity desalination with self-cleaning effect
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2019.02.030
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Hadi Ghasemi & George Ni & Amy Marie Marconnet & James Loomis & Selcuk Yerci & Nenad Miljkovic & Gang Chen, 2014. "Solar steam generation by heat localization," Nature Communications, Nature, vol. 5(1), pages 1-7, December.
- Ma, Sainan & Chiu, Chun Pang & Zhu, Yujiao & Tang, Chun Yin & Long, Hui & Qarony, Wayesh & Zhao, Xinhua & Zhang, Xuming & Lo, Wai Hung & Tsang, Yuen Hong, 2017. "Recycled waste black polyurethane sponges for solar vapor generation and distillation," Applied Energy, Elsevier, vol. 206(C), pages 63-69.
- Felix Creutzig & Peter Agoston & Jan Christoph Goldschmidt & Gunnar Luderer & Gregory Nemet & Robert C. Pietzcker, 2017. "The underestimated potential of solar energy to mitigate climate change," Nature Energy, Nature, vol. 2(9), pages 1-9, September.
- Peng Tao & George Ni & Chengyi Song & Wen Shang & Jianbo Wu & Jia Zhu & Gang Chen & Tao Deng, 2018. "Solar-driven interfacial evaporation," Nature Energy, Nature, vol. 3(12), pages 1031-1041, December.
- Wang, Xinzhi & He, Yurong & Liu, Xing & Cheng, Gong & Zhu, Jiaqi, 2017. "Solar steam generation through bio-inspired interface heating of broadband-absorbing plasmonic membranes," Applied Energy, Elsevier, vol. 195(C), pages 414-425.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ghafurian, Mohammad Mustafa & Malmir, Mohammad Reza & Akbari, Zohreh & Vafaei, Mohammad & Niazmand, Hamid & Goharshadi, Elaheh K. & Ebrahimi, Atefe & Mahian, Omid, 2022. "Interfacial solar steam generation by sawdust coated with W doped VO2," Energy, Elsevier, vol. 244(PB).
- Ma, Xiaolu & Zhao, Jin & Wang, Run & Li, Yuyao & Liu, Chuanyong & Liu, Yong, 2022. "Multi-angle wide-spectrum light-trapping nanofiber membrane for highly efficient solar desalination," Applied Energy, Elsevier, vol. 328(C).
- Gnanasekaran, Arulmurugan & Rajaram, Kamatchi, 2024. "Rational design of different interfacial evaporators for solar steam generation: Recent development, fabrication, challenges and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
- Luo, Xiao & Shi, Jincheng & Zhao, Changying & Luo, Zhouyang & Gu, Xiaokun & Bao, Hua, 2021. "The energy efficiency of interfacial solar desalination," Applied Energy, Elsevier, vol. 302(C).
- Gong, Feng & Wang, Wenbin & Li, Hao & Xia, Dawei (David) & Dai, Qingwen & Wu, Xinlin & Wang, Mingzhou & Li, Jian & Papavassiliou, Dimitrios V. & Xiao, Rui, 2020. "Solid waste and graphite derived solar steam generator for highly-efficient and cost-effective water purification," Applied Energy, Elsevier, vol. 261(C).
- Zhang, Qian & Hu, Run & Chen, Yali & Xiao, Xingfang & Zhao, Guomeng & Yang, Hongjun & Li, Jinhua & Xu, Weilin & Wang, Xianbao, 2020. "Banyan-inspired hierarchical evaporators for efficient solar photothermal conversion," Applied Energy, Elsevier, vol. 276(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Gong, Biyao & Yang, Huachao & Wu, Shenghao & Tian, Yikuan & Yan, Jianhua & Cen, Kefa & Bo, Zheng & Ostrikov, Kostya (Ken), 2021. "Phase change material enhanced sustained and energy-efficient solar-thermal water desalination," Applied Energy, Elsevier, vol. 301(C).
- Mohamed A. Abdelsalam & Muhammad Sajjad & Aikifa Raza & Faisal AlMarzooqi & TieJun Zhang, 2024. "Sustainable biomimetic solar distillation with edge crystallization for passive salt collection and zero brine discharge," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
- Mu, L. & Chen, L. & Lin, L. & Park, Y.H. & Wang, H. & Xu, P. & Kota, K. & Kuravi, S., 2021. "An overview of solar still enhancement approaches for increased freshwater production rates from a thermal process perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
- Fan, Qi & Wu, Lin & Liang, Yan & Xu, Zhicheng & Li, Yungeng & Wang, Jun & Lund, Peter D. & Zeng, Mengyuan & Wang, Wei, 2021. "The role of micro-nano pores in interfacial solar evaporation systems – A review," Applied Energy, Elsevier, vol. 292(C).
- Gong, Feng & Wang, Wenbin & Li, Hao & Xia, Dawei (David) & Dai, Qingwen & Wu, Xinlin & Wang, Mingzhou & Li, Jian & Papavassiliou, Dimitrios V. & Xiao, Rui, 2020. "Solid waste and graphite derived solar steam generator for highly-efficient and cost-effective water purification," Applied Energy, Elsevier, vol. 261(C).
- Guo, Qijing & Yi, Hao & Jia, Feifei & Song, Shaoxian, 2022. "Vertical porous MoS2/hectorite double-layered aerogel as superior salt resistant and highly efficient solar steam generators," Renewable Energy, Elsevier, vol. 194(C), pages 68-79.
- Su, Jinbu & Zhang, Pengkui & Yang, Rui & Wang, Boli & Zhao, Heng & Wang, Weike & Wang, Chengbing, 2022. "MXene-based flexible and washable photothermal fabrics for efficiently continuous solar-driven evaporation and desalination of seawater," Renewable Energy, Elsevier, vol. 195(C), pages 407-415.
- Ma, Sainan & Chiu, Chun Pang & Zhu, Yujiao & Tang, Chun Yin & Long, Hui & Qarony, Wayesh & Zhao, Xinhua & Zhang, Xuming & Lo, Wai Hung & Tsang, Yuen Hong, 2017. "Recycled waste black polyurethane sponges for solar vapor generation and distillation," Applied Energy, Elsevier, vol. 206(C), pages 63-69.
- Luo, Xiao & Wu, Dongxu & Huang, Congliang & Rao, Zhonghao, 2019. "Skeleton double layer structure for high solar steam generation," Energy, Elsevier, vol. 183(C), pages 1032-1039.
- Zhang, Lenan & Xu, Zhenyuan & Bhatia, Bikram & Li, Bangjun & Zhao, Lin & Wang, Evelyn N., 2020. "Modeling and performance analysis of high-efficiency thermally-localized multistage solar stills," Applied Energy, Elsevier, vol. 266(C).
- Gnanasekaran, Arulmurugan & Rajaram, Kamatchi, 2024. "Rational design of different interfacial evaporators for solar steam generation: Recent development, fabrication, challenges and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
- Eliodoro Chiavazzo, 2022. "Critical aspects to enable viable solar-driven evaporative technologies for water treatment," Nature Communications, Nature, vol. 13(1), pages 1-4, December.
- Liu, Shang & Huang, Congliang & Luo, Xiao & Guo, Chuwen, 2019. "Performance optimization of bi-layer solar steam generation system through tuning porosity of bottom layer," Applied Energy, Elsevier, vol. 239(C), pages 504-513.
- Chen, Yanjun & Fu, Shijin & Tao, Qinghe & Liu, Xiuliang & Li, Changzheng & He, Deqiang, 2024. "Experimental study of electric field enhancing the vapor production of the solar interfacial evaporator," Renewable Energy, Elsevier, vol. 220(C).
- Yajie Hu & Hongyun Ma & Mingmao Wu & Tengyu Lin & Houze Yao & Feng Liu & Huhu Cheng & Liangti Qu, 2022. "A reconfigurable and magnetically responsive assembly for dynamic solar steam generation," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
- Li, Haoran & He, Yurong & Liu, Ziyu & Jiang, Baocheng & Huang, Yimin, 2017. "A flexible thin-film membrane with broadband Ag@TiO2 nanoparticle for high-efficiency solar evaporation enhancement," Energy, Elsevier, vol. 139(C), pages 210-219.
- Lenan Zhang & Xiangyu Li & Yang Zhong & Arny Leroy & Zhenyuan Xu & Lin Zhao & Evelyn N. Wang, 2022. "Highly efficient and salt rejecting solar evaporation via a wick-free confined water layer," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
- Yu, Zhen & Cheng, Shaoan & Gu, Ruonan & Li, Yihang & Dai, Shaoling & Mao, Zhengzhong, 2021. "Interfacial solar evaporator for clean water production and beyond: From design to application," Applied Energy, Elsevier, vol. 299(C).
- Huang, Jian & He, Yurong & Chen, Meijie & Wang, Xinzhi, 2019. "Separating photo-thermal conversion and steam generation process for evaporation enhancement using a solar absorber," Applied Energy, Elsevier, vol. 236(C), pages 244-252.
- Huang, Jian & He, Yurong & Hu, Yanwei & Wang, Xinzhi, 2018. "Steam generation enabled by a high efficiency solar absorber with thermal concentration," Energy, Elsevier, vol. 165(PB), pages 1282-1291.
More about this item
Keywords
Solar energy; Steam generation; Photo-thermal material; Desalination;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:241:y:2019:i:c:p:652-659. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.