IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v231y2018icp1230-1245.html
   My bibliography  Save this article

Confidentiality preservation in user-side integrated energy system management for cloud computing

Author

Listed:
  • Tian, Nianfeng
  • Ding, Tao
  • Yang, Yongheng
  • Guo, Qinglai
  • Sun, Hongbin
  • Blaabjerg, Frede

Abstract

Under the development of information and communication technologies, this paper discusses a cloud-based user-side integrated energy management to improve the energy utilization efficiency in a smart community, for which a two-level model is proposed that relies on an energy hub and load aggregators. Furthermore, to address the issue of preserving confidentiality for the cloud service, an information-masking mechanism is designed based on linear mapping functions, whose information-masking requirements and processes are specified accordingly. Numerical results demonstrate the effectiveness of the proposed model and of the method for cloud computing.

Suggested Citation

  • Tian, Nianfeng & Ding, Tao & Yang, Yongheng & Guo, Qinglai & Sun, Hongbin & Blaabjerg, Frede, 2018. "Confidentiality preservation in user-side integrated energy system management for cloud computing," Applied Energy, Elsevier, vol. 231(C), pages 1230-1245.
  • Handle: RePEc:eee:appene:v:231:y:2018:i:c:p:1230-1245
    DOI: 10.1016/j.apenergy.2018.09.068
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918313722
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.09.068?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. McKenna, R.C. & Bchini, Q. & Weinand, J.M. & Michaelis, J. & König, S. & Köppel, W. & Fichtner, W., 2018. "The future role of Power-to-Gas in the energy transition: Regional and local techno-economic analyses in Baden-Württemberg," Applied Energy, Elsevier, vol. 212(C), pages 386-400.
    2. Hong, Bowen & Zhang, Weitong & Zhou, Yue & Chen, Jian & Xiang, Yue & Mu, Yunfei, 2018. "Energy-Internet-oriented microgrid energy management system architecture and its application in China," Applied Energy, Elsevier, vol. 228(C), pages 2153-2164.
    3. Li, Guoqing & Zhang, Rufeng & Jiang, Tao & Chen, Houhe & Bai, Linquan & Cui, Hantao & Li, Xiaojing, 2017. "Optimal dispatch strategy for integrated energy systems with CCHP and wind power," Applied Energy, Elsevier, vol. 192(C), pages 408-419.
    4. Jin, Xiaolong & Mu, Yunfei & Jia, Hongjie & Wu, Jianzhong & Xu, Xiandong & Yu, Xiaodan, 2016. "Optimal day-ahead scheduling of integrated urban energy systems," Applied Energy, Elsevier, vol. 180(C), pages 1-13.
    5. Deane, J.P. & Ó Ciaráin, M. & Ó Gallachóir, B.P., 2017. "An integrated gas and electricity model of the EU energy system to examine supply interruptions," Applied Energy, Elsevier, vol. 193(C), pages 479-490.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Feng, Chenjia & Shao, Chengcheng & Wang, Xifan, 2021. "CSP clustering in unit commitment for power system production cost modeling," Renewable Energy, Elsevier, vol. 168(C), pages 1217-1228.
    2. Mu, Chenlu & Ding, Tao & Qu, Ming & Zhou, Quan & Li, Fangxing & Shahidehpour, Mohammad, 2020. "Decentralized optimization operation for the multiple integrated energy systems with energy cascade utilization," Applied Energy, Elsevier, vol. 280(C).
    3. Xueying Song & Hongyu Lin & Gejirifu De & Hanfang Li & Xiaoxu Fu & Zhongfu Tan, 2020. "An Energy Optimal Dispatching Model of an Integrated Energy System Based on Uncertain Bilevel Programming," Energies, MDPI, vol. 13(2), pages 1-24, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chi, Lixun & Su, Huai & Zio, Enrico & Zhang, Jinjun & Li, Xueyi & Zhang, Li & Fan, Lin & Zhou, Jing & Bai, Hua, 2020. "Integrated Deterministic and Probabilistic Safety Analysis of Integrated Energy Systems with bi-directional conversion," Energy, Elsevier, vol. 212(C).
    2. Farrokhifar, Meisam & Nie, Yinghui & Pozo, David, 2020. "Energy systems planning: A survey on models for integrated power and natural gas networks coordination," Applied Energy, Elsevier, vol. 262(C).
    3. Jiang, Tao & Zhang, Rufeng & Li, Xue & Chen, Houhe & Li, Guoqing, 2021. "Integrated energy system security region: Concepts, methods, and implementations," Applied Energy, Elsevier, vol. 283(C).
    4. Xing, Xuetao & Lin, Jin & Song, Yonghua & Hu, Qiang & Zhou, You & Mu, Shujun, 2018. "Optimization of hydrogen yield of a high-temperature electrolysis system with coordinated temperature and feed factors at various loading conditions: A model-based study," Applied Energy, Elsevier, vol. 232(C), pages 368-385.
    5. Bailera, Manuel & Peña, Begoña & Lisbona, Pilar & Romeo, Luis M., 2018. "Decision-making methodology for managing photovoltaic surplus electricity through Power to Gas: Combined heat and power in urban buildings," Applied Energy, Elsevier, vol. 228(C), pages 1032-1045.
    6. Gillessen, B. & Heinrichs, H. & Hake, J.-F. & Allelein, H.-J., 2019. "Natural gas as a bridge to sustainability: Infrastructure expansion regarding energy security and system transition," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    7. Bao, Zhejing & Chen, Dawei & Wu, Lei & Guo, Xiaogang, 2019. "Optimal inter- and intra-hour scheduling of islanded integrated-energy system considering linepack of gas pipelines," Energy, Elsevier, vol. 171(C), pages 326-340.
    8. Zheng, Lingwei & Zhou, Xingqiu & Qiu, Qi & Yang, Lan, 2020. "Day-ahead optimal dispatch of an integrated energy system considering time-frequency characteristics of renewable energy source output," Energy, Elsevier, vol. 209(C).
    9. Yang, Xiaohui & Chen, Zaixing & Huang, Xin & Li, Ruixin & Xu, Shaoping & Yang, Chunsheng, 2021. "Robust capacity optimization methods for integrated energy systems considering demand response and thermal comfort," Energy, Elsevier, vol. 221(C).
    10. Mu, Yunfei & Chen, Wanqing & Yu, Xiaodan & Jia, Hongjie & Hou, Kai & Wang, Congshan & Meng, Xianjun, 2020. "A double-layer planning method for integrated community energy systems with varying energy conversion efficiencies," Applied Energy, Elsevier, vol. 279(C).
    11. Liu, Liu & Wang, Dan & Hou, Kai & Jia, Hong-jie & Li, Si-yuan, 2020. "Region model and application of regional integrated energy system security analysis," Applied Energy, Elsevier, vol. 260(C).
    12. Lei, Yunkai & Hou, Kai & Wang, Yue & Jia, Hongjie & Zhang, Pei & Mu, Yunfei & Jin, Xiaolong & Sui, Bingyan, 2018. "A new reliability assessment approach for integrated energy systems: Using hierarchical decoupling optimization framework and impact-increment based state enumeration method," Applied Energy, Elsevier, vol. 210(C), pages 1237-1250.
    13. Gu, Chenghong & Tang, Can & Xiang, Yue & Xie, Da, 2019. "Power-to-gas management using robust optimisation in integrated energy systems," Applied Energy, Elsevier, vol. 236(C), pages 681-689.
    14. Lv, Chaoxian & Yu, Hao & Li, Peng & Wang, Chengshan & Xu, Xiandong & Li, Shuquan & Wu, Jianzhong, 2019. "Model predictive control based robust scheduling of community integrated energy system with operational flexibility," Applied Energy, Elsevier, vol. 243(C), pages 250-265.
    15. Kou, Yu & Bie, Zhaohong & Li, Gengfeng & Liu, Fan & Jiang, Jiangfeng, 2021. "Reliability evaluation of multi-agent integrated energy systems with fully distributed communication," Energy, Elsevier, vol. 224(C).
    16. Wang, Rutian & Wen, Xiangyun & Wang, Xiuyun & Fu, Yanbo & Zhang, Yu, 2022. "Low carbon optimal operation of integrated energy system based on carbon capture technology, LCA carbon emissions and ladder-type carbon trading," Applied Energy, Elsevier, vol. 311(C).
    17. Qu, Kaiping & Yu, Tao & Zhang, Xiaoshun & Li, Haofei, 2019. "Homogenized adjacent points method: A novel Pareto optimizer for linearized multi-objective optimal energy flow of integrated electricity and gas system," Applied Energy, Elsevier, vol. 233, pages 338-351.
    18. Tang, Difei & Yang, Xiangguo & Yong, Jing & Xu, Wilsun, 2019. "Active method for mitigation of induced voltage in integrated energy systems," Applied Energy, Elsevier, vol. 235(C), pages 553-563.
    19. Juanwei, Chen & Tao, Yu & Yue, Xu & Xiaohua, Cheng & Bo, Yang & Baomin, Zhen, 2019. "Fast analytical method for reliability evaluation of electricity-gas integrated energy system considering dispatch strategies," Applied Energy, Elsevier, vol. 242(C), pages 260-272.
    20. Gui, Yonghao & Wei, Baoze & Li, Mingshen & Guerrero, Josep M. & Vasquez, Juan C., 2018. "Passivity-based coordinated control for islanded AC microgrid," Applied Energy, Elsevier, vol. 229(C), pages 551-561.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:231:y:2018:i:c:p:1230-1245. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.