IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v212y2018icp895-908.html
   My bibliography  Save this article

Integrated photovoltaic and battery energy storage (PV-BES) systems: An analysis of existing financial incentive policies in the US

Author

Listed:
  • Zhang, Jian
  • Cho, Heejin
  • Luck, Rogelio
  • Mago, Pedro J.

Abstract

This paper presents an analysis of existing financial incentive policies in the U.S. for integrated photovoltaic and battery energy storage (PV-BES) systems. A mathematical model of PV-BES system to evaluate annual energy performance is developed in this paper. Four types of buildings (i.e., hospital, large office, large hotel, and secondary school) located in four different states, which each has their own PV and/or BES incentives, are selected and analyzed. Based on the energy performance data for each building type, the simply payback period (PBP) for the PV-BES system in different locations is calculated according to the local incentive policies. The PBP is chosen as an indicator to evaluate the effectiveness of incentive policies for different locations and building types by comparing it to the PBP for the same PV-BES systems without incentive policies. The reduction of carbon dioxide emission (CDE) due to the PV generation is also investigated since it indicates the potential to reduce the PBP for a further step when a high carbon credit is available. Furthermore, a parametric analysis is conducted to determine the sensitivity and contribution of parameters such as the capacity of the PV-BES system, the capital cost of PV module and the battery storage on the performance of the PV-BES system. Results show that for all the evaluated buildings in California and Hawaii, the existing incentive policy could reduce the PBP effectively below 10 years. However, the PBP for most of the evaluated buildings in New Jersey and New York were high even when both the PV and BES incentive policies were taken into account (approximately from 11 to 29 years).

Suggested Citation

  • Zhang, Jian & Cho, Heejin & Luck, Rogelio & Mago, Pedro J., 2018. "Integrated photovoltaic and battery energy storage (PV-BES) systems: An analysis of existing financial incentive policies in the US," Applied Energy, Elsevier, vol. 212(C), pages 895-908.
  • Handle: RePEc:eee:appene:v:212:y:2018:i:c:p:895-908
    DOI: 10.1016/j.apenergy.2017.12.091
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917318147
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.12.091?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chae, Young Tae & Kim, Jeehwan & Park, Hongsik & Shin, Byungha, 2014. "Building energy performance evaluation of building integrated photovoltaic (BIPV) window with semi-transparent solar cells," Applied Energy, Elsevier, vol. 129(C), pages 217-227.
    2. Yuan, Chaoqing & Liu, Sifeng & Yang, Yingjie & Chen, Ding & Fang, Zhigeng & Shui, Lulu, 2014. "An analysis on investment policy effect of China’s photovoltaic industry based on feedback model," Applied Energy, Elsevier, vol. 135(C), pages 423-428.
    3. Pflaum, Peter & Alamir, M. & Lamoudi, M.Y., 2017. "Battery sizing for PV power plants under regulations using randomized algorithms," Renewable Energy, Elsevier, vol. 113(C), pages 596-607.
    4. Chou, Shuo-Yan & Nguyen, Thi Anh Tuyet & Yu, Tiffany Hui-Kuang & Phan, Nguyen Ky Phuc, 2015. "Financial assessment of government subsidy policy on photovoltaic systems for industrial users: A case study in Taiwan," Energy Policy, Elsevier, vol. 87(C), pages 505-516.
    5. Han, Xiaojuan & Zhang, Hua & Yu, Xiaoling & Wang, Lina, 2016. "Economic evaluation of grid-connected micro-grid system with photovoltaic and energy storage under different investment and financing models," Applied Energy, Elsevier, vol. 184(C), pages 103-118.
    6. Shivashankar, S. & Mekhilef, Saad & Mokhlis, Hazlie & Karimi, M., 2016. "Mitigating methods of power fluctuation of photovoltaic (PV) sources – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1170-1184.
    7. Zhang, Jian & Cho, Heejin & Knizley, Alta, 2016. "Evaluation of financial incentives for combined heat and power (CHP) systems in U.S. regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 738-762.
    8. Luo, Xing & Wang, Jihong & Dooner, Mark & Clarke, Jonathan, 2015. "Overview of current development in electrical energy storage technologies and the application potential in power system operation," Applied Energy, Elsevier, vol. 137(C), pages 511-536.
    9. Hung, Duong Quoc & Mithulananthan, N. & Bansal, R.C., 2014. "Integration of PV and BES units in commercial distribution systems considering energy loss and voltage stability," Applied Energy, Elsevier, vol. 113(C), pages 1162-1170.
    10. de Oliveira e Silva, Guilherme & Hendrick, Patrick, 2016. "Lead–acid batteries coupled with photovoltaics for increased electricity self-sufficiency in households," Applied Energy, Elsevier, vol. 178(C), pages 856-867.
    11. Miguel De Simón-Martín & Ana-María Diez-Suárez & Laura Álvarez-de Prado & Alberto González-Martínez & Álvaro De la Puente-Gil & Jorge Blanes-Peiró, 2017. "Development of a GIS Tool for High Precision PV Degradation Monitoring and Supervision: Feasibility Analysis in Large and Small PV Plants," Sustainability, MDPI, vol. 9(6), pages 1-29, June.
    12. Sani Hassan, Abubakar & Cipcigan, Liana & Jenkins, Nick, 2017. "Optimal battery storage operation for PV systems with tariff incentives," Applied Energy, Elsevier, vol. 203(C), pages 422-441.
    13. Bertsch, Valentin & Geldermann, Jutta & Lühn, Tobias, 2017. "What drives the profitability of household PV investments, self-consumption and self-sufficiency?," Applied Energy, Elsevier, vol. 204(C), pages 1-15.
    14. Brusco, Giovanni & Burgio, Alessandro & Menniti, Daniele & Pinnarelli, Anna & Sorrentino, Nicola, 2016. "The economic viability of a feed-in tariff scheme that solely rewards self-consumption to promote the use of integrated photovoltaic battery systems," Applied Energy, Elsevier, vol. 183(C), pages 1075-1085.
    15. Fossati, Juan P. & Galarza, Ainhoa & Martín-Villate, Ander & Fontán, Luis, 2015. "A method for optimal sizing energy storage systems for microgrids," Renewable Energy, Elsevier, vol. 77(C), pages 539-549.
    16. Linssen, Jochen & Stenzel, Peter & Fleer, Johannes, 2017. "Techno-economic analysis of photovoltaic battery systems and the influence of different consumer load profiles," Applied Energy, Elsevier, vol. 185(P2), pages 2019-2025.
    17. Bianchini, Augusto & Gambuti, Michele & Pellegrini, Marco & Saccani, Cesare, 2016. "Performance analysis and economic assessment of different photovoltaic technologies based on experimental measurements," Renewable Energy, Elsevier, vol. 85(C), pages 1-11.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Jicheng & Lu, Yunyuan, 2022. "Research on the evaluation of China's photovoltaic policy driving ability under the background of carbon neutrality," Energy, Elsevier, vol. 250(C).
    2. Krisha Maharjan & Jian Zhang & Heejin Cho & Yang Chen, 2023. "Distributed Energy Systems: Multi-Objective Design Optimization Based on Life Cycle Environmental and Economic Impacts," Energies, MDPI, vol. 16(21), pages 1-21, October.
    3. Ambrosio-Albala, P. & Upham, P. & Bale, C.S.E. & Taylor, P.G., 2020. "Exploring acceptance of decentralised energy storage at household and neighbourhood scales: A UK survey," Energy Policy, Elsevier, vol. 138(C).
    4. Xiang, Yue & Cai, Hanhu & Liu, Junyong & Zhang, Xin, 2021. "Techno-economic design of energy systems for airport electrification: A hydrogen-solar-storage integrated microgrid solution," Applied Energy, Elsevier, vol. 283(C).
    5. Mauler, Lukas & Duffner, Fabian & Leker, Jens, 2021. "Economies of scale in battery cell manufacturing: The impact of material and process innovations," Applied Energy, Elsevier, vol. 286(C).
    6. Rômulo de Oliveira Azevêdo & Paulo Rotela Junior & Luiz Célio Souza Rocha & Gianfranco Chicco & Giancarlo Aquila & Rogério Santana Peruchi, 2020. "Identification and Analysis of Impact Factors on the Economic Feasibility of Photovoltaic Energy Investments," Sustainability, MDPI, vol. 12(17), pages 1-40, September.
    7. Wenhui Zhao & Rong Li & Shuan Zhu, 2024. "Subsidy Policies and Economic Analysis of Photovoltaic Energy Storage Integration in China," Energies, MDPI, vol. 17(10), pages 1-24, May.
    8. Koskela, Juha & Rautiainen, Antti & Järventausta, Pertti, 2019. "Using electrical energy storage in residential buildings – Sizing of battery and photovoltaic panels based on electricity cost optimization," Applied Energy, Elsevier, vol. 239(C), pages 1175-1189.
    9. Zakeri, Behnam & Gissey, Giorgio Castagneto & Dodds, Paul E. & Subkhankulova, Dina, 2021. "Centralized vs. distributed energy storage – Benefits for residential users," Energy, Elsevier, vol. 236(C).
    10. Li, Longxi & Cao, Xilin, 2022. "Comprehensive effectiveness assessment of energy storage incentive mechanisms for PV-ESS projects based on compound real options," Energy, Elsevier, vol. 239(PA).
    11. Thopil, George Alex & Sachse, Christiaan Eddie & Lalk, Jörg & Thopil, Miriam Sara, 2020. "Techno-economic performance comparison of crystalline and thin film PV panels under varying meteorological conditions: A high solar resource southern hemisphere case," Applied Energy, Elsevier, vol. 275(C).
    12. Ahsan, Syed M. & Khan, Hassan A. & Hassan, Naveed-ul & Arif, Syed M. & Lie, Tek-Tjing, 2020. "Optimized power dispatch for solar photovoltaic-storage system with multiple buildings in bilateral contracts," Applied Energy, Elsevier, vol. 273(C).
    13. Neves, Rebecca & Cho, Heejin & Zhang, Jian, 2021. "State of the nation: Customizing energy and finances for geothermal technology in the United States residential sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    14. Maria Psillaki & Nikolaos Apostolopoulos & Ilias Makris & Panagiotis Liargovas & Sotiris Apostolopoulos & Panos Dimitrakopoulos & George Sklias, 2023. "Hospitals’ Energy Efficiency in the Perspective of Saving Resources and Providing Quality Services through Technological Options: A Systematic Literature Review," Energies, MDPI, vol. 16(2), pages 1-21, January.
    15. Yang, Changhui & Fu, Yuting & He, Lijun & Jiang, Qi & Cui, Yangyu, 2024. "Real options analysis for regional investment decisions of household PV-ESS in China," Energy, Elsevier, vol. 293(C).
    16. Zhang, Tianyang & Pota, Himanshu & Chu, Chi-Cheng & Gadh, Rajit, 2018. "Real-time renewable energy incentive system for electric vehicles using prioritization and cryptocurrency," Applied Energy, Elsevier, vol. 226(C), pages 582-594.
    17. Bagheri, Mehdi & Delbari, Seyed Hamid & Pakzadmanesh, Mina & Kennedy, Christopher A., 2019. "City-integrated renewable energy design for low-carbon and climate-resilient communities," Applied Energy, Elsevier, vol. 239(C), pages 1212-1225.
    18. Zakeri, Behnam & Cross, Samuel & Dodds, Paul.E. & Gissey, Giorgio Castagneto, 2021. "Policy options for enhancing economic profitability of residential solar photovoltaic with battery energy storage," Applied Energy, Elsevier, vol. 290(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Petrollese, Mario & Cau, Giorgio & Cocco, Daniele, 2018. "Use of weather forecast for increasing the self-consumption rate of home solar systems: An Italian case study," Applied Energy, Elsevier, vol. 212(C), pages 746-758.
    2. Hua, Zhengcao & Ma, Chao & Lian, Jijian & Pang, Xiulan & Yang, Weichao, 2019. "Optimal capacity allocation of multiple solar trackers and storage capacity for utility-scale photovoltaic plants considering output characteristics and complementary demand," Applied Energy, Elsevier, vol. 238(C), pages 721-733.
    3. Avilés A., Camilo & Oliva H., Sebastian & Watts, David, 2019. "Single-dwelling and community renewable microgrids: Optimal sizing and energy management for new business models," Applied Energy, Elsevier, vol. 254(C).
    4. Rômulo de Oliveira Azevêdo & Paulo Rotela Junior & Luiz Célio Souza Rocha & Gianfranco Chicco & Giancarlo Aquila & Rogério Santana Peruchi, 2020. "Identification and Analysis of Impact Factors on the Economic Feasibility of Photovoltaic Energy Investments," Sustainability, MDPI, vol. 12(17), pages 1-40, September.
    5. Luthander, Rasmus & Nilsson, Annica M. & Widén, Joakim & Åberg, Magnus, 2019. "Graphical analysis of photovoltaic generation and load matching in buildings: A novel way of studying self-consumption and self-sufficiency," Applied Energy, Elsevier, vol. 250(C), pages 748-759.
    6. Roberts, Mike B. & Bruce, Anna & MacGill, Iain, 2019. "Impact of shared battery energy storage systems on photovoltaic self-consumption and electricity bills in apartment buildings," Applied Energy, Elsevier, vol. 245(C), pages 78-95.
    7. Ma, Tao & Zhang, Yijie & Gu, Wenbo & Xiao, Gang & Yang, Hongxing & Wang, Shuxiao, 2022. "Strategy comparison and techno-economic evaluation of a grid-connected photovoltaic-battery system," Renewable Energy, Elsevier, vol. 197(C), pages 1049-1060.
    8. Tassenoy, Robin & Couvreur, Kenny & Beyne, Wim & De Paepe, Michel & Lecompte, Steven, 2022. "Techno-economic assessment of Carnot batteries for load-shifting of solar PV production of an office building," Renewable Energy, Elsevier, vol. 199(C), pages 1133-1144.
    9. Zhang, Yijie & Ma, Tao & Yang, Hongxing, 2022. "Grid-connected photovoltaic battery systems: A comprehensive review and perspectives," Applied Energy, Elsevier, vol. 328(C).
    10. Lucas Deotti & Wanessa Guedes & Bruno Dias & Tiago Soares, 2020. "Technical and Economic Analysis of Battery Storage for Residential Solar Photovoltaic Systems in the Brazilian Regulatory Context," Energies, MDPI, vol. 13(24), pages 1-30, December.
    11. Bai, Bo & Xiong, Siqin & Song, Bo & Xiaoming, Ma, 2019. "Economic analysis of distributed solar photovoltaics with reused electric vehicle batteries as energy storage systems in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 213-229.
    12. Han, Xuejiao & Garrison, Jared & Hug, Gabriela, 2022. "Techno-economic analysis of PV-battery systems in Switzerland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    13. Liu, Xuezhi & Yan, Zheng & Wu, Jianzhong, 2019. "Optimal coordinated operation of a multi-energy community considering interactions between energy storage and conversion devices," Applied Energy, Elsevier, vol. 248(C), pages 256-273.
    14. Andreolli, Francesca & D’Alpaos, Chiara & Moretto, Michele, 2022. "Valuing investments in domestic PV-Battery Systems under uncertainty," Energy Economics, Elsevier, vol. 106(C).
    15. Federica Cucchiella & Idiano D’Adamo & Massimo Gastaldi, 2017. "The Economic Feasibility of Residential Energy Storage Combined with PV Panels: The Role of Subsidies in Italy," Energies, MDPI, vol. 10(9), pages 1-18, September.
    16. Sani Hassan, Abubakar & Cipcigan, Liana & Jenkins, Nick, 2017. "Optimal battery storage operation for PV systems with tariff incentives," Applied Energy, Elsevier, vol. 203(C), pages 422-441.
    17. Ramallo-González, Alfonso P. & Loonen, Roel & Tomat, Valentina & Zamora, Miguel Ángel & Surugin, Dmitry & Hensen, Jan, 2020. "Nomograms for de-complexing the dimensioning of off-grid PV systems," Renewable Energy, Elsevier, vol. 161(C), pages 162-172.
    18. Georgiou, Giorgos S. & Christodoulides, Paul & Kalogirou, Soteris A., 2019. "Real-time energy convex optimization, via electrical storage, in buildings – A review," Renewable Energy, Elsevier, vol. 139(C), pages 1355-1365.
    19. Angenendt, Georg & Zurmühlen, Sebastian & Axelsen, Hendrik & Sauer, Dirk Uwe, 2018. "Comparison of different operation strategies for PV battery home storage systems including forecast-based operation strategies," Applied Energy, Elsevier, vol. 229(C), pages 884-899.
    20. Antonio Rosato & Antonio Ciervo & Giovanni Ciampi & Michelangelo Scorpio & Sergio Sibilio, 2020. "Integration of Micro-Cogeneration Units and Electric Storages into a Micro-Scale Residential Solar District Heating System Operating with a Seasonal Thermal Storage," Energies, MDPI, vol. 13(20), pages 1-40, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:212:y:2018:i:c:p:895-908. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.