IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v200y2017icp237-248.html
   My bibliography  Save this article

Overlapping carbon pricing and renewable support schemes under political uncertainty: Global lessons from an Australian case study

Author

Listed:
  • Shahnazari, Mahdi
  • McHugh, Adam
  • Maybee, Bryan
  • Whale, Jonathan

Abstract

The translation of a greenhouse gas (GHG) emissions reduction policy objective to the required investment in low emissions technologies may be hindered by political contest over the policy instruments employed to achieve it. Political contest may also result in enactment of overlapping policy instruments which, from a ‘policy purist’ perspective, may not appear well calibrated to a shared GHG emissions reduction objective. This paper reports insights gained from an integrated real options and portfolio optimisation model of electricity generation investment behaviour under political uncertainty over the futures of interacting carbon pricing and renewable portfolio standard (RPS) instruments. We compare modelling results and actual outcomes in Australia, where an emission reduction target has had bipartisan support but the means to achieve it has not, to test the assertion that overlapping policy instruments must always increase the social costs of GHG abatement. Results suggest that overlapping a politically contested carbon pricing policy with an RPS may result in a lower risk, renewable energy (RE) investment environment, as the overlap allows investors to hedge their portfolio against political uncertainty through RE additions. Consequently, GHG abatement objectives may be achieved at lower cost than would be the case without the policy interaction. The policies overlap can provide a ‘safety valve’ or ‘hedge’ to both private investors and policymakers when deep uncertainties over the future of energy and climate policies influence investment strategies.

Suggested Citation

  • Shahnazari, Mahdi & McHugh, Adam & Maybee, Bryan & Whale, Jonathan, 2017. "Overlapping carbon pricing and renewable support schemes under political uncertainty: Global lessons from an Australian case study," Applied Energy, Elsevier, vol. 200(C), pages 237-248.
  • Handle: RePEc:eee:appene:v:200:y:2017:i:c:p:237-248
    DOI: 10.1016/j.apenergy.2017.05.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917305500
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.05.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xin-gang Zhao & Yu-zhuo Zhang & Yan-bin Li, 2018. "The Evolution of Renewable Energy Price Policies Based on Improved Bass Model: A System Dynamics (SD) Analysis," Sustainability, MDPI, vol. 10(6), pages 1-20, May.
    2. Bolanos, Jose A., 2019. "Energy, uncertainty, and entrepreneurship: John D Rockefeller’s sequential approach to transaction costs management in the early oil industry," LSE Research Online Documents on Economics 100852, London School of Economics and Political Science, LSE Library.
    3. Song, Yazhi & Liu, Tiansen & Liang, Dapeng & Li, Yin & Song, Xiaoqiu, 2019. "A Fuzzy Stochastic Model for Carbon Price Prediction Under the Effect of Demand-related Policy in China's Carbon Market," Ecological Economics, Elsevier, vol. 157(C), pages 253-265.
    4. Wang, Ge & Zhang, Qi & Su, Bin & Shen, Bo & Li, Yan & Li, Zhengjun, 2021. "Coordination of tradable carbon emission permits market and renewable electricity certificates market in China," Energy Economics, Elsevier, vol. 93(C).
    5. Fan, Jing-Li & Wang, Jia-Xing & Hu, Jia-Wei & Yang, Yang & Wang, Yu, 2021. "Will China achieve its renewable portfolio standard targets? An analysis from the perspective of supply and demand," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    6. Yi, Bo-Wen & Xu, Jin-Hua & Fan, Ying, 2019. "Coordination of policy goals between renewable portfolio standards and carbon caps: A quantitative assessment in China," Applied Energy, Elsevier, vol. 237(C), pages 25-35.
    7. Locatelli, Giorgio & Mancini, Mauro & Lotti, Giovanni, 2020. "A simple-to-implement real options method for the energy sector," Energy, Elsevier, vol. 197(C).
    8. Li, Wei & Lu, Can & Zhang, Yan-Wu, 2019. "Prospective exploration of future renewable portfolio standard schemes in China via a multi-sector CGE model," Energy Policy, Elsevier, vol. 128(C), pages 45-56.
    9. Yanbin Li & Min Wu & Zhen Li, 2018. "A Real Options Analysis for Renewable Energy Investment Decisions under China Carbon Trading Market," Energies, MDPI, vol. 11(7), pages 1-10, July.
    10. Wang, Bing & Wei, Yi-Ming & Yuan, Xiao-Chen, 2018. "Possible design with equity and responsibility in China’s renewable portfolio standards," Applied Energy, Elsevier, vol. 232(C), pages 685-694.
    11. Fan, Xinghua & Lv, Xiangxiang & Yin, Jiuli & Tian, Lixin & Liang, Jiaochen, 2019. "Multifractality and market efficiency of carbon emission trading market: Analysis using the multifractal detrended fluctuation technique," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    12. Ma, Xiaochen & Pan, Yanchun & Zhang, Manzi & Ma, Jianhua & Yang, Wen, 2024. "Impact of carbon emission trading and renewable energy development policy on the sustainability of electricity market: A stackelberg game analysis," Energy Economics, Elsevier, vol. 129(C).
    13. Sibylle Braungardt & Veit Bürger & Benjamin Köhler, 2021. "Carbon Pricing and Complementary Policies—Consistency of the Policy Mix for Decarbonizing Buildings in Germany," Energies, MDPI, vol. 14(21), pages 1-14, November.
    14. Tran, Thomas T.D. & Smith, Amanda D., 2018. "Incorporating performance-based global sensitivity and uncertainty analysis into LCOE calculations for emerging renewable energy technologies," Applied Energy, Elsevier, vol. 216(C), pages 157-171.
    15. Flottmann, Jonty, 2024. "Australian energy policy decisions in the wake of the 2022 energy crisis," Economic Analysis and Policy, Elsevier, vol. 81(C), pages 238-248.
    16. Taylor, David D.J. & Layurova, Mariya & Vogel, David S. & Slocum, Alexander H., 2019. "Black into green: A BIG opportunity for North Dakota’s oil and gas producers," Applied Energy, Elsevier, vol. 242(C), pages 1189-1197.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:200:y:2017:i:c:p:237-248. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.