IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v194y2017icp751-764.html
   My bibliography  Save this article

Optimization of a residential district with special consideration on energy and water reliability

Author

Listed:
  • Campana, Pietro Elia
  • Quan, Steven Jige
  • Robbio, Federico Ignacio
  • Lundblad, Anders
  • Zhang, Yang
  • Ma, Tao
  • Karlsson, Björn
  • Yan, Jinyue

Abstract

Many cities around the world have reached a critical situation when it comes to energy and water supply, threatening the urban sustainable development. From an engineering and architecture perspective it is mandatory to design cities taking into account energy and water issues to achieve high living and sustainability standards. The aim of this paper is to develop an optimization model for the planning of residential urban districts with special consideration of renewables and water harvesting integration. The optimization model is multi-objective which uses a genetic algorithm to minimize the system life cycle costs, and maximize renewables and water harvesting reliability through dynamic simulations. The developed model can be used for spatial optimization design of new urban districts. It can also be employed for analyzing the performances of existing urban districts under an energy-water-economic viewpoint.

Suggested Citation

  • Campana, Pietro Elia & Quan, Steven Jige & Robbio, Federico Ignacio & Lundblad, Anders & Zhang, Yang & Ma, Tao & Karlsson, Björn & Yan, Jinyue, 2017. "Optimization of a residential district with special consideration on energy and water reliability," Applied Energy, Elsevier, vol. 194(C), pages 751-764.
  • Handle: RePEc:eee:appene:v:194:y:2017:i:c:p:751-764
    DOI: 10.1016/j.apenergy.2016.10.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916314295
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.10.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ma, Tao & Yang, Hongxing & Lu, Lin & Peng, Jinqing, 2014. "Technical feasibility study on a standalone hybrid solar-wind system with pumped hydro storage for a remote island in Hong Kong," Renewable Energy, Elsevier, vol. 69(C), pages 7-15.
    2. Hirvonen, Janne & Kayo, Genku & Hasan, Ala & Sirén, Kai, 2016. "Zero energy level and economic potential of small-scale building-integrated PV with different heating systems in Nordic conditions," Applied Energy, Elsevier, vol. 167(C), pages 255-269.
    3. Sinha, Sunanda & Chandel, S.S., 2015. "Review of recent trends in optimization techniques for solar photovoltaic–wind based hybrid energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 755-769.
    4. Kanase-Patil, A.B. & Saini, R.P. & Sharma, M.P., 2011. "Sizing of integrated renewable energy system based on load profiles and reliability index for the state of Uttarakhand in India," Renewable Energy, Elsevier, vol. 36(11), pages 2809-2821.
    5. Janghorban Esfahani, Iman & Yoo, ChangKyoo, 2016. "An optimization algorithm-based pinch analysis and GA for an off-grid batteryless photovoltaic-powered reverse osmosis desalination system," Renewable Energy, Elsevier, vol. 91(C), pages 233-248.
    6. Shang, Ce & Srinivasan, Dipti & Reindl, Thomas, 2016. "Generation-scheduling-coupled battery sizing of stand-alone hybrid power systems," Energy, Elsevier, vol. 114(C), pages 671-682.
    7. Henry Muyingo, 2015. "Organizational Challenges in the Adoption of Building Applied Photovoltaics in the Swedish Tenant-Owner Housing Sector," Sustainability, MDPI, vol. 7(4), pages 1-28, March.
    8. Unknown, 2016. "Energy for Sustainable Development," Conference Proceedings 253270, Guru Arjan Dev Institute of Development Studies (IDSAsr).
    9. González, Arnau & Riba, Jordi-Roger & Rius, Antoni & Puig, Rita, 2015. "Optimal sizing of a hybrid grid-connected photovoltaic and wind power system," Applied Energy, Elsevier, vol. 154(C), pages 752-762.
    10. De Meij, A. & Vinuesa, J.-F. & Maupas, V. & Waddle, J. & Price, I. & Yaseen, B. & Ismail, A., 2016. "Wind energy resource mapping of Palestine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 551-562.
    11. -, 2016. "Monitoring energy efficiency in Latin America," Documentos de Proyectos 40809, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    12. ., 2016. "Electric energy utilities," Chapters, in: Public Utilities, Second Edition, chapter 4, pages 69-88, Edward Elgar Publishing.
    13. Ouda, O.K.M. & Raza, S.A. & Nizami, A.S. & Rehan, M. & Al-Waked, R. & Korres, N.E., 2016. "Waste to energy potential: A case study of Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 328-340.
    14. Ma, Tao & Yang, Hongxing & Lu, Lin, 2014. "A feasibility study of a stand-alone hybrid solar–wind–battery system for a remote island," Applied Energy, Elsevier, vol. 121(C), pages 149-158.
    15. Arnau González & Jordi-Roger Riba & Antoni Rius, 2015. "Optimal Sizing of a Hybrid Grid-Connected Photovoltaic–Wind–Biomass Power System," Sustainability, MDPI, vol. 7(9), pages 1-20, September.
    16. Chiu, Yie-Ru & Liaw, Chao-Hsien & Chen, Liang-Ching, 2009. "Optimizing rainwater harvesting systems as an innovative approach to saving energy in hilly communities," Renewable Energy, Elsevier, vol. 34(3), pages 492-498.
    17. Jako Jellema & Henk A. J. Mulder, 2016. "Public Engagement in Energy Research," Energies, MDPI, vol. 9(3), pages 1-19, February.
    18. Ma, Tao & Yang, Hongxing & Lu, Lin & Peng, Jinqing, 2015. "Optimal design of an autonomous solar–wind-pumped storage power supply system," Applied Energy, Elsevier, vol. 160(C), pages 728-736.
    19. Björn Nykvist & Måns Nilsson, 2015. "Rapidly falling costs of battery packs for electric vehicles," Nature Climate Change, Nature, vol. 5(4), pages 329-332, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Diane Palmer & Elena Koumpli & Ian Cole & Ralph Gottschalg & Thomas Betts, 2018. "A GIS-Based Method for Identification of Wide Area Rooftop Suitability for Minimum Size PV Systems Using LiDAR Data and Photogrammetry," Energies, MDPI, vol. 11(12), pages 1-22, December.
    2. Lago, Jesus & De Ridder, Fjo & Mazairac, Wiet & De Schutter, Bart, 2019. "A 1-dimensional continuous and smooth model for thermally stratified storage tanks including mixing and buoyancy," Applied Energy, Elsevier, vol. 248(C), pages 640-655.
    3. Hussain, Akhtar & Bui, Van-Hai & Kim, Hak-Man, 2019. "Microgrids as a resilience resource and strategies used by microgrids for enhancing resilience," Applied Energy, Elsevier, vol. 240(C), pages 56-72.
    4. Zhang, Yang & Campana, Pietro Elia & Yang, Ying & Stridh, Bengt & Lundblad, Anders & Yan, Jinyue, 2018. "Energy flexibility from the consumer: Integrating local electricity and heat supplies in a building," Applied Energy, Elsevier, vol. 223(C), pages 430-442.
    5. Angelo Algieri & Pietropaolo Morrone & Sergio Bova, 2020. "Techno-Economic Analysis of Biofuel, Solar and Wind Multi-Source Small-Scale CHP Systems," Energies, MDPI, vol. 13(11), pages 1-21, June.
    6. Adefarati, T. & Bansal, R.C., 2017. "Reliability and economic assessment of a microgrid power system with the integration of renewable energy resources," Applied Energy, Elsevier, vol. 206(C), pages 911-933.
    7. Klemm, Christian & Vennemann, Peter, 2021. "Modeling and optimization of multi-energy systems in mixed-use districts: A review of existing methods and approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    8. Younesi, Abdollah & Shayeghi, Hossein & Wang, Zongjie & Siano, Pierluigi & Mehrizi-Sani, Ali & Safari, Amin, 2022. "Trends in modern power systems resilience: State-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    9. Fu, Xueqian & Zhang, Xiurong & Qiao, Zheng & Li, Gengyin, 2019. "Estimating the failure probability in an integrated energy system considering correlations among failure patterns," Energy, Elsevier, vol. 178(C), pages 656-666.
    10. Ferrari, Simone & Zagarella, Federica & Caputo, Paola & D'Amico, Antonino, 2019. "Results of a literature review on methods for estimating buildings energy demand at district level," Energy, Elsevier, vol. 175(C), pages 1130-1137.
    11. Song, Chunhe & Jing, Wei & Zeng, Peng & Rosenberg, Catherine, 2017. "An analysis on the energy consumption of circulating pumps of residential swimming pools for peak load management," Applied Energy, Elsevier, vol. 195(C), pages 1-12.
    12. Fuentes-Cortés, Luis Fabián & Flores-Tlacuahuac, Antonio, 2018. "Integration of distributed generation technologies on sustainable buildings," Applied Energy, Elsevier, vol. 224(C), pages 582-601.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Meng & Infante Ferreira, Carlos A., 2017. "Absorption heat pump cycles with NH3 – ionic liquid working pairs," Applied Energy, Elsevier, vol. 204(C), pages 819-830.
    2. Mukherjee, Shilpi & Dhingra, Tarun & Sengupta, Anirban, 2017. "Status of Electricity Act, 2003: A systematic review of literature," Energy Policy, Elsevier, vol. 102(C), pages 237-248.
    3. Yu, Hyun Jin Julie, 2017. "Virtuous cycle of solar photovoltaic development in new regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1357-1366.
    4. World Bank, 2020. "Global Economic Prospects, June 2020," World Bank Publications - Books, The World Bank Group, number 33748.
    5. Javed, Muhammad Shahzad & Song, Aotian & Ma, Tao, 2019. "Techno-economic assessment of a stand-alone hybrid solar-wind-battery system for a remote island using genetic algorithm," Energy, Elsevier, vol. 176(C), pages 704-717.
    6. Melikoglu, Mehmet, 2017. "Vision 2023: Status quo and future of biomass and coal for sustainable energy generation in Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 800-808.
    7. González, Arnau & Riba, Jordi-Roger & Rius, Antoni, 2016. "Combined heat and power design based on environmental and cost criteria," Energy, Elsevier, vol. 116(P1), pages 922-932.
    8. Yan, Xiaohe & Gu, Chenghong & Li, Furong & Xiang, Yue, 2018. "Network pricing for customer-operated energy storage in distribution networks," Applied Energy, Elsevier, vol. 212(C), pages 283-292.
    9. Katheryn Donado & Loraine Navarro & Christian G. Quintero M. & Mauricio Pardo, 2019. "HYRES: A Multi-Objective Optimization Tool for Proper Configuration of Renewable Hybrid Energy Systems," Energies, MDPI, vol. 13(1), pages 1-20, December.
    10. Oliva H., Sebastian, 2017. "Residential energy efficiency and distributed generation - Natural partners or competition?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 932-940.
    11. Akbar Maleki & Marc A. Rosen & Fathollah Pourfayaz, 2017. "Optimal Operation of a Grid-Connected Hybrid Renewable Energy System for Residential Applications," Sustainability, MDPI, vol. 9(8), pages 1-20, July.
    12. Guo, Shaopeng & Liu, Qibin & Sun, Jie & Jin, Hongguang, 2018. "A review on the utilization of hybrid renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1121-1147.
    13. Sun, Wei & Harrison, Gareth P., 2019. "Wind-solar complementarity and effective use of distribution network capacity," Applied Energy, Elsevier, vol. 247(C), pages 89-101.
    14. Meschede, Henning & Holzapfel, Peter & Kadelbach, Florian & Hesselbach, Jens, 2016. "Classification of global island regarding the opportunity of using RES," Applied Energy, Elsevier, vol. 175(C), pages 251-258.
    15. Talaat, M. & Farahat, M.A. & Elkholy, M.H., 2019. "Renewable power integration: Experimental and simulation study to investigate the ability of integrating wave, solar and wind energies," Energy, Elsevier, vol. 170(C), pages 668-682.
    16. Wang, Gang & Zhang, Zhen & Lin, Jianqing, 2024. "Multi-energy complementary power systems based on solar energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    17. Solomon, A.A. & Kammen, Daniel M. & Callaway, D., 2016. "Investigating the impact of wind–solar complementarities on energy storage requirement and the corresponding supply reliability criteria," Applied Energy, Elsevier, vol. 168(C), pages 130-145.
    18. Bertsiou, M. & Feloni, E. & Karpouzos, D. & Baltas, E., 2018. "Water management and electricity output of a Hybrid Renewable Energy System (HRES) in Fournoi Island in Aegean Sea," Renewable Energy, Elsevier, vol. 118(C), pages 790-798.
    19. Ogunjuyigbe, A.S.O. & Ayodele, T.R. & Akinola, O.A., 2016. "Optimal allocation and sizing of PV/Wind/Split-diesel/Battery hybrid energy system for minimizing life cycle cost, carbon emission and dump energy of remote residential building," Applied Energy, Elsevier, vol. 171(C), pages 153-171.
    20. Javed, Muhammad Shahzad & Ma, Tao & Jurasz, Jakub & Amin, Muhammad Yasir, 2020. "Solar and wind power generation systems with pumped hydro storage: Review and future perspectives," Renewable Energy, Elsevier, vol. 148(C), pages 176-192.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:194:y:2017:i:c:p:751-764. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.