IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v185y2017ip1p627-641.html
   My bibliography  Save this article

On the utility death spiral and the impact of utility rate structures on the adoption of residential solar photovoltaics and energy storage

Author

Listed:
  • Laws, Nicholas D.
  • Epps, Brenden P.
  • Peterson, Steven O.
  • Laser, Mark S.
  • Wanjiru, G. Kamau

Abstract

Today, many electric utilities are changing their pricing structures to address the rapidly-growing market for residential photovoltaic (PV) and electricity storage technologies. Little is known about how the new utility pricing structures will affect the adoption rates of these technologies, as well as the ability of utilities to prevent widespread grid defection. We present a system dynamics model that predicts the retail price of electricity and the adoption rates of residential solar photovoltaic and energy storage systems. Simulations are run from the present day to the year 2050 using three different utility business models: net metering, wholesale compensation, and demand charge. Validation results, initialized with historical data for three different cities, agree well with expert forecasts for the retail price of electricity. Sensitivity analyses are conducted to investigate the likelihood of a “utility death spiral”, which is a catastrophic loss of business due to widespread grid-defection. Results indicate that a utility death spiral requires a perfect storm of high intrinsic adoption rates, rising utility costs, and favorable customer financials. Interestingly, the model indicates that pricing structures that reduce distributed generation compensation support grid defection, whereas pricing structures that reward distributed generation (such as net metering) also reduce grid defection and the risk of a death spiral.

Suggested Citation

  • Laws, Nicholas D. & Epps, Brenden P. & Peterson, Steven O. & Laser, Mark S. & Wanjiru, G. Kamau, 2017. "On the utility death spiral and the impact of utility rate structures on the adoption of residential solar photovoltaics and energy storage," Applied Energy, Elsevier, vol. 185(P1), pages 627-641.
  • Handle: RePEc:eee:appene:v:185:y:2017:i:p1:p:627-641
    DOI: 10.1016/j.apenergy.2016.10.123
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916315732
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.10.123?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paul Simshauser, 2014. "From First Place to Last: The National Electricity Market's Policy-Induced ‘Energy Market Death Spiral’," Australian Economic Review, The University of Melbourne, Melbourne Institute of Applied Economic and Social Research, vol. 47(4), pages 540-562, December.
    2. Severance, Craig A., 2011. "A Practical, Affordable (and Least Business Risk) Plan to Achieve "80% Clean Electricity" by 2035," The Electricity Journal, Elsevier, vol. 24(6), pages 8-26, July.
    3. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    4. Ondeck, Abigail D. & Edgar, Thomas F. & Baldea, Michael, 2015. "Optimal operation of a residential district-level combined photovoltaic/natural gas power and cooling system," Applied Energy, Elsevier, vol. 156(C), pages 593-606.
    5. Frank M. Bass, 1969. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 15(5), pages 215-227, January.
    6. Nicholls, A. & Sharma, R. & Saha, T.K., 2015. "Financial and environmental analysis of rooftop photovoltaic installations with battery storage in Australia," Applied Energy, Elsevier, vol. 159(C), pages 252-264.
    7. Janko, Samantha A. & Arnold, Michael R. & Johnson, Nathan G., 2016. "Implications of high-penetration renewables for ratepayers and utilities in the residential solar photovoltaic (PV) market," Applied Energy, Elsevier, vol. 180(C), pages 37-51.
    8. Khalilpour, Rajab & Vassallo, Anthony, 2015. "Leaving the grid: An ambition or a real choice?," Energy Policy, Elsevier, vol. 82(C), pages 207-221.
    9. Cole, Wesley & Lewis, Haley & Sigrin, Ben & Margolis, Robert, 2016. "Interactions of rooftop PV deployment with the capacity expansion of the bulk power system," Applied Energy, Elsevier, vol. 168(C), pages 473-481.
    10. Darghouth, Naïm R. & Wiser, Ryan H. & Barbose, Galen & Mills, Andrew D., 2016. "Net metering and market feedback loops: Exploring the impact of retail rate design on distributed PV deployment," Applied Energy, Elsevier, vol. 162(C), pages 713-722.
    11. Shakouri, Mahmoud & Lee, Hyun Woo & Choi, Kunhee, 2015. "PACPIM: New decision-support model of optimized portfolio analysis for community-based photovoltaic investment," Applied Energy, Elsevier, vol. 156(C), pages 607-617.
    12. Owen Q. Wu & Roman Kapuscinski, 2013. "Curtailing Intermittent Generation in Electrical Systems," Manufacturing & Service Operations Management, INFORMS, vol. 15(4), pages 578-595, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Castaneda, Monica & Jimenez, Maritza & Zapata, Sebastian & Franco, Carlos J. & Dyner, Isaac, 2017. "Myths and facts of the utility death spiral," Energy Policy, Elsevier, vol. 110(C), pages 105-116.
    2. Castaneda, Monica & Franco, Carlos J. & Dyner, Isaac, 2017. "Evaluating the effect of technology transformation on the electricity utility industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 341-351.
    3. Wilkinson, Sam & Maticka, Martin J. & Liu, Yue & John, Michele, 2021. "The duck curve in a drying pond: The impact of rooftop PV on the Western Australian electricity market transition," Utilities Policy, Elsevier, vol. 71(C).
    4. Paul Simshauser & David Downer, 2016. "On the Inequity of Flat-rate Electricity Tariffs," The Energy Journal, , vol. 37(3), pages 199-230, July.
    5. Xu, Mei & Xie, Pu & Xie, Bai-Chen, 2020. "Study of China's optimal solar photovoltaic power development path to 2050," Resources Policy, Elsevier, vol. 65(C).
    6. Simpson, Genevieve, 2017. "Network operators and the transition to decentralised electricity: An Australian socio-technical case study," Energy Policy, Elsevier, vol. 110(C), pages 422-433.
    7. Say, Kelvin & John, Michele & Dargaville, Roger, 2019. "Power to the people: Evolutionary market pressures from residential PV battery investments in Australia," Energy Policy, Elsevier, vol. 134(C).
    8. Claudia Gunther & Wolf-Peter Schill & Alexander Zerrahn, 2019. "Prosumage of solar electricity: tariff design, capacity investments, and power system effects," Papers 1907.09855, arXiv.org.
    9. L. (Lisa B.) Ryan & Sarah La Monaca & Linda Mastrandrea & Petr Spodniak, 2018. "Harnessing Electricity Retail Tariffs to Support Climate Change Policy," Working Papers 201822, School of Economics, University College Dublin.
    10. Günther, Claudia & Schill, Wolf-Peter & Zerrahn, Alexander, 2021. "Prosumage of solar electricity: Tariff design, capacity investments, and power sector effects," Energy Policy, Elsevier, vol. 152(C).
    11. Carlos J. Sarasa-Maestro & Rodolfo Dufo-López & José L. Bernal-Agustín, 2016. "Analysis of Photovoltaic Self-Consumption Systems," Energies, MDPI, vol. 9(9), pages 1-18, August.
    12. Tim Nelson & Stephanie Bashir & Eleanor McCracken-Hewson & Michael Pierce, 2017. "The Changing Nature of the Australian Electricity Industry," Economic Papers, The Economic Society of Australia, vol. 36(2), pages 104-120, June.
    13. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    14. Shaw-Williams, Damian & Susilawati, Connie, 2020. "A techno-economic evaluation of Virtual Net Metering for the Australian community housing sector," Applied Energy, Elsevier, vol. 261(C).
    15. Simshauser, Paul, 2016. "Distribution network prices and solar PV: Resolving rate instability and wealth transfers through demand tariffs," Energy Economics, Elsevier, vol. 54(C), pages 108-122.
    16. Dong, Changgui & Sigrin, Benjamin & Brinkman, Gregory, 2017. "Forecasting residential solar photovoltaic deployment in California," Technological Forecasting and Social Change, Elsevier, vol. 117(C), pages 251-265.
    17. Say, Kelvin & John, Michele & Dargaville, Roger & Wills, Raymond T., 2018. "The coming disruption: The movement towards the customer renewable energy transition," Energy Policy, Elsevier, vol. 123(C), pages 737-748.
    18. Turkson, Charles & Liu, Wenbin & Acquaye, Adolf, 2024. "A data envelopment analysis based evaluation of sustainable energy generation portfolio scenarios," Applied Energy, Elsevier, vol. 363(C).
    19. Yamamoto, Yoshihiro, 2021. "A bidirectional payment system for mitigating the supply–demand imbalance among prosumers based on the core of coalitional game theory under the enhanced use of renewable energy," Energy Economics, Elsevier, vol. 96(C).
    20. Gorman, Will & Jarvis, Stephen & Callaway, Duncan, 2020. "Should I Stay Or Should I Go? The importance of electricity rate design for household defection from the power grid," Applied Energy, Elsevier, vol. 262(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:185:y:2017:i:p1:p:627-641. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.