Optimization and GIS-based combined approach for the determination of the most cost-effective investments in biomass sector
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2016.06.037
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Sartor, K. & Quoilin, S. & Dewallef, P., 2014. "Simulation and optimization of a CHP biomass plant and district heating network," Applied Energy, Elsevier, vol. 130(C), pages 474-483.
- Viana, H. & Cohen, Warren B. & Lopes, D. & Aranha, J., 2010. "Assessment of forest biomass for use as energy. GIS-based analysis of geographical availability and locations of wood-fired power plants in Portugal," Applied Energy, Elsevier, vol. 87(8), pages 2551-2560, August.
- Ba, Birome Holo & Prins, Christian & Prodhon, Caroline, 2016. "Models for optimization and performance evaluation of biomass supply chains: An Operations Research perspective," Renewable Energy, Elsevier, vol. 87(P2), pages 977-989.
- Flores, Julio R. & Montagna, Jorge M. & Vecchietti, Aldo, 2014. "An optimization approach for long term investments planning in energy," Applied Energy, Elsevier, vol. 122(C), pages 162-178.
- Vélez, Fredy & Segovia, José J. & Martín, M. Carmen & Antolín, Gregorio & Chejne, Farid & Quijano, Ana, 2012. "A technical, economical and market review of organic Rankine cycles for the conversion of low-grade heat for power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4175-4189.
- Bojić, Sanja & Đatkov, Đorđe & Brcanov, Dejan & Georgijević, Milosav & Martinov, Milan, 2013. "Location allocation of solid biomass power plants: Case study of Vojvodina," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 769-775.
- Höhn, J. & Lehtonen, E. & Rasi, S. & Rintala, J., 2014. "A Geographical Information System (GIS) based methodology for determination of potential biomasses and sites for biogas plants in southern Finland," Applied Energy, Elsevier, vol. 113(C), pages 1-10.
- Samsatli, Sheila & Samsatli, Nouri J. & Shah, Nilay, 2015. "BVCM: A comprehensive and flexible toolkit for whole system biomass value chain analysis and optimisation – Mathematical formulation," Applied Energy, Elsevier, vol. 147(C), pages 131-160.
- Hendricks, Aaron M. & Wagner, John E. & Volk, Timothy A. & Newman, David H. & Brown, Tristan R., 2016. "A cost-effective evaluation of biomass district heating in rural communities," Applied Energy, Elsevier, vol. 162(C), pages 561-569.
- Sultana, Arifa & Kumar, Amit, 2012. "Optimal siting and size of bioenergy facilities using geographic information system," Applied Energy, Elsevier, vol. 94(C), pages 192-201.
- Thakur, Amit & Canter, Christina E. & Kumar, Amit, 2014. "Life-cycle energy and emission analysis of power generation from forest biomass," Applied Energy, Elsevier, vol. 128(C), pages 246-253.
- Shabani, Nazanin & Sowlati, Taraneh, 2013. "A mixed integer non-linear programming model for tactical value chain optimization of a wood biomass power plant," Applied Energy, Elsevier, vol. 104(C), pages 353-361.
- Calvert, K., 2011. "Geomatics and bioenergy feasibility assessments: Taking stock and looking forward," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1117-1124, February.
- Shabani, Nazanin & Sowlati, Taraneh & Ouhimmou, Mustapha & Rönnqvist, Mikael, 2014. "Tactical supply chain planning for a forest biomass power plant under supply uncertainty," Energy, Elsevier, vol. 78(C), pages 346-355.
- Gunnarsson, Helene & Ronnqvist, Mikael & Lundgren, Jan T., 2004. "Supply chain modelling of forest fuel," European Journal of Operational Research, Elsevier, vol. 158(1), pages 103-123, October.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Lovrak, Ana & Pukšec, Tomislav & Duić, Neven, 2020. "A Geographical Information System (GIS) based approach for assessing the spatial distribution and seasonal variation of biogas production potential from agricultural residues and municipal biowaste," Applied Energy, Elsevier, vol. 267(C).
- Tan, Sie Ting & Hashim, Haslenda & Abdul Rashid, Ahmad H. & Lim, Jeng Shiun & Ho, Wai Shin & Jaafar, Abu Bakar, 2018. "Economic and spatial planning for sustainable oil palm biomass resources to mitigate transboundary haze issue," Energy, Elsevier, vol. 146(C), pages 169-178.
- Vukasinovic, Vladimir & Gordic, Dusan & Zivkovic, Marija & Koncalovic, Davor & Zivkovic, Dubravka, 2019. "Long-term planning methodology for improving wood biomass utilization," Energy, Elsevier, vol. 175(C), pages 818-829.
- Chakraborty, Abhishek & Biswal, Anima & Pandey, Varun & Shadab, Syed & Kalyandeep, K. & Murthy, C.S. & Seshasai, M.V.R. & Rao, P.V.N. & Jain, Niveta & Sehgal, V.K. & Kaushik, Nirmala & Singh, Sanjay &, 2022. "Developing a spatial information system of biomass potential from crop residues over India: A decision support for planning and establishment of biofuel/biomass power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
- Schipfer, Fabian & Kranzl, Lukas, 2019. "Techno-economic evaluation of biomass-to-end-use chains based on densified bioenergy carriers (dBECs)," Applied Energy, Elsevier, vol. 239(C), pages 715-724.
- Kanematsu, Yuichiro & Oosawa, Kazutake & Okubo, Tatsuya & Kikuchi, Yasunori, 2017. "Designing the scale of a woody biomass CHP considering local forestry reformation: A case study of Tanegashima, Japan," Applied Energy, Elsevier, vol. 198(C), pages 160-172.
- Jenkins, Timothy L. & Jin, Enze & Sutherland, John W., 2020. "Effect of harvest region shape, biomass yield, and plant location on optimal biofuel facility size," Forest Policy and Economics, Elsevier, vol. 111(C).
- Moncada, J.A. & Lukszo, Z. & Junginger, M. & Faaij, A. & Weijnen, M., 2017. "A conceptual framework for the analysis of the effect of institutions on biofuel supply chains," Applied Energy, Elsevier, vol. 185(P1), pages 895-915.
- Senocak, Ahmet Alp & Guner Goren, Hacer, 2023. "Three-phase artificial intelligence-geographic information systems-based biomass network design approach: A case study in Denizli," Applied Energy, Elsevier, vol. 343(C).
- Durusut, Emrah & Tahir, Foaad & Foster, Sam & Dineen, Denis & Clancy, Matthew, 2018. "BioHEAT: A policy decision support tool in Ireland’s bioenergy and heat sectors," Applied Energy, Elsevier, vol. 213(C), pages 306-321.
- Jeffrey Steven Paulson & Anil Raj Kizha & Han-Sup Han, 2019. "Integrating Biomass Conversion Technologies with Recovery Operations In-Woods: Modeling Supply Chain," Logistics, MDPI, vol. 3(3), pages 1-14, July.
- Sharma, B. & Birrell, S. & Miguez, F.E., 2017. "Spatial modeling framework for bioethanol plant siting and biofuel production potential in the U.S," Applied Energy, Elsevier, vol. 191(C), pages 75-86.
- Fernando López-Rodríguez & Justo García Sanz-Calcedo & Francisco J. Moral-García, 2019. "Spatial Analysis of Residual Biomass and Location of Future Storage Centers in the Southwest of Europe," Energies, MDPI, vol. 12(10), pages 1-16, May.
- Zailan, Roziah & Lim, Jeng Shiun & Manan, Zainuddin Abdul & Alwi, Sharifah Rafidah Wan & Mohammadi-ivatloo, Behnam & Jamaluddin, Khairulnadzmi, 2021. "Malaysia scenario of biomass supply chain-cogeneration system and optimization modeling development: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
- Gautam, Shuva & LeBel, Luc & Carle, Marc-André, 2017. "Supply chain model to assess the feasibility of incorporating a terminal between forests and biorefineries," Applied Energy, Elsevier, vol. 198(C), pages 377-384.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Vukasinovic, Vladimir & Gordic, Dusan & Zivkovic, Marija & Koncalovic, Davor & Zivkovic, Dubravka, 2019. "Long-term planning methodology for improving wood biomass utilization," Energy, Elsevier, vol. 175(C), pages 818-829.
- Malladi, Krishna Teja & Sowlati, Taraneh, 2018. "Biomass logistics: A review of important features, optimization modeling and the new trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 587-599.
- Kanematsu, Yuichiro & Oosawa, Kazutake & Okubo, Tatsuya & Kikuchi, Yasunori, 2017. "Designing the scale of a woody biomass CHP considering local forestry reformation: A case study of Tanegashima, Japan," Applied Energy, Elsevier, vol. 198(C), pages 160-172.
- Ba, Birome Holo & Prins, Christian & Prodhon, Caroline, 2016. "Models for optimization and performance evaluation of biomass supply chains: An Operations Research perspective," Renewable Energy, Elsevier, vol. 87(P2), pages 977-989.
- Soha, Tamás & Papp, Luca & Csontos, Csaba & Munkácsy, Béla, 2021. "The importance of high crop residue demand on biogas plant site selection, scaling and feedstock allocation – A regional scale concept in a Hungarian study area," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
- Mosayeb Dashtpeyma & Reza Ghodsi, 2021. "Forest Biomass and Bioenergy Supply Chain Resilience: A Systematic Literature Review on the Barriers and Enablers," Sustainability, MDPI, vol. 13(12), pages 1-21, June.
- Devlin, Ger & Talbot, Bruce, 2014. "Deriving cooperative biomass resource transport supply strategies in meeting co-firing energy regulations: A case for peat and wood fibre in Ireland," Applied Energy, Elsevier, vol. 113(C), pages 1700-1709.
- Mikkel Bojesen & Luc Boerboom & Hans Skov-Petersen, 2014. "Towards a sustainable capacity expansion of the Danish biogas sector," IFRO Working Paper 2014/03, University of Copenhagen, Department of Food and Resource Economics.
- Malladi, Krishna Teja & Quirion-Blais, Olivier & Sowlati, Taraneh, 2018. "Development of a decision support tool for optimizing the short-term logistics of forest-based biomass," Applied Energy, Elsevier, vol. 216(C), pages 662-677.
- Jayarathna, Lasinidu & Kent, Geoff & O’Hara, Ian & Hobson, Philip, 2022. "Geographical information system based fuzzy multi criteria analysis for sustainability assessment of biomass energy plant siting: A case study in Queensland, Australia," Land Use Policy, Elsevier, vol. 114(C).
- Tatiana M. Pinho & João Paulo Coelho & Germano Veiga & A. Paulo Moreira & José Boaventura-Cunha, 2017. "A Multilayer Model Predictive Control Methodology Applied to a Biomass Supply Chain Operational Level," Complexity, Hindawi, vol. 2017, pages 1-10, July.
- Shu, Kesheng & Schneider, Uwe A. & Scheffran, Jürgen, 2017. "Optimizing the bioenergy industry infrastructure: Transportation networks and bioenergy plant locations," Applied Energy, Elsevier, vol. 192(C), pages 247-261.
- Shabani, Nazanin & Akhtari, Shaghaygh & Sowlati, Taraneh, 2013. "Value chain optimization of forest biomass for bioenergy production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 299-311.
- Sarker, Bhaba R. & Wu, Bingqing & Paudel, Krishna P., 2019. "Modeling and optimization of a supply chain of renewable biomass and biogas: Processing plant location," Applied Energy, Elsevier, vol. 239(C), pages 343-355.
- Mobtaker, A. & Ouhimmou, M. & Audy, J.-F. & Rönnqvist, M., 2021. "A review on decision support systems for tactical logistics planning in the context of forest bioeconomy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
- Mohsen Jamali & Esmaeil Bakhshandeh & Mohammad Yaghoubi Khanghahi & Carmine Crecchio, 2021. "Metadata Analysis to Evaluate Environmental Impacts of Wheat Residues Burning on Soil Quality in Developing and Developed Countries," Sustainability, MDPI, vol. 13(11), pages 1-13, June.
- Zimmer, Tobias & Rudi, Andreas & Müller, Ann-Kathrin & Fröhling, Magnus & Schultmann, Frank, 2017. "Modeling the impact of competing utilization paths on biomass-to-liquid (BtL) supply chains," Applied Energy, Elsevier, vol. 208(C), pages 954-971.
- Cambero, Claudia & Sowlati, Taraneh, 2014. "Assessment and optimization of forest biomass supply chains from economic, social and environmental perspectives – A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 62-73.
- Stanisław Bielski & Renata Marks-Bielska & Anna Zielińska-Chmielewska & Kęstutis Romaneckas & Egidijus Šarauskis, 2021. "Importance of Agriculture in Creating Energy Security—A Case Study of Poland," Energies, MDPI, vol. 14(9), pages 1-20, April.
- Wu, Bingqing & Sarker, Bhaba R. & Paudel, Krishna P., 2015. "Sustainable energy from biomass: Biomethane manufacturing plant location and distribution problem," Applied Energy, Elsevier, vol. 158(C), pages 597-608.
More about this item
Keywords
Biomass; Mathematical optimization; Conversion technologies; Geographic information system; Community energy planning; Net present value quotient;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:178:y:2016:i:c:p:250-259. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.