IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v164y2016icp312-320.html
   My bibliography  Save this article

Efficient outdoor performance of esthetic bifacial a-Si:H semi-transparent PV modules

Author

Listed:
  • Myong, Seung Yeop
  • Jeon, Sang Won

Abstract

We developed bifacial transparent back contact (TBC) hydrogenated amorphous silicon (a-Si:H) semi-transparent glass-to-glass photovoltaic (PV) modules with emotionally inoffensive and esthetically pleasing colors have been developed by combining the transparent back contact and color of the back glass. Due to the high series resistance of the transparent back contact, the bifacial TBC a-Si:H semi-transparent PV modules had a lower rated power after light soaking than the monofacial opaque (metal) back contact (OBC) a-Si:H semi-transparent PV modules fabricated using the additional laser scribing patterns. However, the TBC a-Si:H semi-transparent PV module produced a higher annual electrical energy output than the OBC a-Si:H semi-transparent PV module thanks to bifacial power generation during the outdoor field test. In particular, the performance ratio of the TBC a-Si:H semi-transparent PV module measured at the optimal tilt angle of 30° surpassed its simulated prediction by a drastically high value of 124.5%. At a higher tilt angle of 85°, bifacial power generation produced a higher deviation between the measured and simulated annual performance of the TBC a-Si:H semi-transparent PV module. Since the reflected albedo has a tendency to increase toward higher tilt angles, bifacial power generation can compensate for the loss of lower direct plane-of-array irradiation at a higher tilt angle. Therefore, the TBC a-Si:H semi-transparent PV module is suitable for the vertically mounted building integrated photovoltaic modules for use in curtain walls, façades, roofs and traffic noise barriers by harvesting reflected and illuminated light.

Suggested Citation

  • Myong, Seung Yeop & Jeon, Sang Won, 2016. "Efficient outdoor performance of esthetic bifacial a-Si:H semi-transparent PV modules," Applied Energy, Elsevier, vol. 164(C), pages 312-320.
  • Handle: RePEc:eee:appene:v:164:y:2016:i:c:p:312-320
    DOI: 10.1016/j.apenergy.2015.11.063
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915015135
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.11.063?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chae, Young Tae & Kim, Jeehwan & Park, Hongsik & Shin, Byungha, 2014. "Building energy performance evaluation of building integrated photovoltaic (BIPV) window with semi-transparent solar cells," Applied Energy, Elsevier, vol. 129(C), pages 217-227.
    2. Strzalka, Aneta & Alam, Nazmul & Duminil, Eric & Coors, Volker & Eicker, Ursula, 2012. "Large scale integration of photovoltaics in cities," Applied Energy, Elsevier, vol. 93(C), pages 413-421.
    3. Li, Danny H.W. & Lam, Tony N.T. & Chan, Wilco W.H. & Mak, Ada H.L., 2009. "Energy and cost analysis of semi-transparent photovoltaic in office buildings," Applied Energy, Elsevier, vol. 86(5), pages 722-729, May.
    4. Mercaldo, Lucia Vittoria & Addonizio, Maria Luisa & Noce, Marco Della & Veneri, Paola Delli & Scognamiglio, Alessandra & Privato, Carlo, 2009. "Thin film silicon photovoltaics: Architectural perspectives and technological issues," Applied Energy, Elsevier, vol. 86(10), pages 1836-1844, October.
    5. Myong, Seung Yeop & Park, You-Chul & Jeon, Sang Won, 2015. "Performance of Si-based PV rooftop systems operated under distinct four seasons," Renewable Energy, Elsevier, vol. 81(C), pages 482-489.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, Yanyi & Shanks, Katie & Baig, Hasan & Zhang, Wei & Hao, Xia & Li, Yongxue & He, Bo & Wilson, Robin & Liu, Hao & Sundaram, Senthilarasu & Zhang, Jingquan & Xie, Lingzhi & Mallick, Tapas & Wu, Yupe, 2018. "Integrated semi-transparent cadmium telluride photovoltaic glazing into windows: Energy and daylight performance for different architecture designs," Applied Energy, Elsevier, vol. 231(C), pages 972-984.
    2. Hao Tian & Wei Zhang & Lingzhi Xie & Yupeng Wu & Yanyi Sun & Mo Chen & Wei Wang & Xinwen Wu, 2018. "Study on the Energy Saving Potential for Semi-Transparent PV Window in Southwest China," Energies, MDPI, vol. 11(11), pages 1-13, November.
    3. Muthu Vimala & Geetha Ramadas & Muthaiya Perarasi & Athikesavan Muthu Manokar & Ravishankar Sathyamurthy, 2023. "A Review of Different Types of Solar Cell Materials Employed in Bifacial Solar Photovoltaic Panel," Energies, MDPI, vol. 16(8), pages 1-19, April.
    4. Chen, Mo & Zhang, Wei & Xie, Lingzhi & Ni, Zhichun & Wei, Qingzhu & Wang, Wei & Tian, Hao, 2019. "Experimental and numerical evaluation of the crystalline silicon PV window under the climatic conditions in southwest China," Energy, Elsevier, vol. 183(C), pages 584-598.
    5. Luo, Yongqiang & Zhang, Ling & Wang, Xiliang & Xie, Lei & Liu, Zhongbing & Wu, Jing & Zhang, Yelin & He, Xihua, 2017. "A comparative study on thermal performance evaluation of a new double skin façade system integrated with photovoltaic blinds," Applied Energy, Elsevier, vol. 199(C), pages 281-293.
    6. Karim Menoufi, 2017. "Dust Accumulation on the Surface of Photovoltaic Panels: Introducing the Photovoltaic Soiling Index (PVSI)," Sustainability, MDPI, vol. 9(6), pages 1-12, June.
    7. Wei Zhang & Wei Wang & Lingzhi Xie & Hao Tian & Mo Chen & Zihao Li & Jianhui Li, 2020. "Cross-seasonal Experimental Study on the Comprehensive Performance of C-Si PV Window," Energies, MDPI, vol. 13(21), pages 1-26, October.
    8. Jouttijärvi, Sami & Lobaccaro, Gabriele & Kamppinen, Aleksi & Miettunen, Kati, 2022. "Benefits of bifacial solar cells combined with low voltage power grids at high latitudes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    9. Shui-Yang Lien, 2016. "Artist Photovoltaic Modules," Energies, MDPI, vol. 9(7), pages 1-9, July.
    10. Zhang, Wei & Li, Jianhui & Xie, Lingzhi & Hao, Xia & Mallick, Tapas & Wu, Yupeng & Baig, Hasan & Shanks, Katie & Sun, Yanyi & Yan, Xiaoyu & Tian, Hao & Li, Zihao, 2022. "Comprehensive analysis of electrical-optical performance and application potential for 3D concentrating photovoltaic window," Renewable Energy, Elsevier, vol. 189(C), pages 369-382.
    11. Qiong Wu & Xiaofeng Zhang & Qi Wang, 2024. "Integrating Renewable Energy in Transportation: Challenges, Solutions, and Future Prospects on Photovoltaic Noise Barriers," Sustainability, MDPI, vol. 16(6), pages 1-19, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eke, Rustu & Senturk, Ali, 2013. "Monitoring the performance of single and triple junction amorphous silicon modules in two building integrated photovoltaic (BIPV) installations," Applied Energy, Elsevier, vol. 109(C), pages 154-162.
    2. Cannavale, Alessandro & Ierardi, Laura & Hörantner, Maximilian & Eperon, Giles E. & Snaith, Henry J. & Ayr, Ubaldo & Martellotta, Francesco, 2017. "Improving energy and visual performance in offices using building integrated perovskite-based solar cells: A case study in Southern Italy," Applied Energy, Elsevier, vol. 205(C), pages 834-846.
    3. Tiantian Zhang & Meng Wang & Hongxing Yang, 2018. "A Review of the Energy Performance and Life-Cycle Assessment of Building-Integrated Photovoltaic (BIPV) Systems," Energies, MDPI, vol. 11(11), pages 1-34, November.
    4. Peng, Jinqing & Curcija, Dragan C. & Thanachareonkit, Anothai & Lee, Eleanor S. & Goudey, Howdy & Selkowitz, Stephen E., 2019. "Study on the overall energy performance of a novel c-Si based semitransparent solar photovoltaic window," Applied Energy, Elsevier, vol. 242(C), pages 854-872.
    5. Peng, Jinqing & Curcija, Dragan C. & Lu, Lin & Selkowitz, Stephen E. & Yang, Hongxing & Zhang, Weilong, 2016. "Numerical investigation of the energy saving potential of a semi-transparent photovoltaic double-skin facade in a cool-summer Mediterranean climate," Applied Energy, Elsevier, vol. 165(C), pages 345-356.
    6. Cannavale, Alessandro & Hörantner, Maximilian & Eperon, Giles E. & Snaith, Henry J. & Fiorito, Francesco & Ayr, Ubaldo & Martellotta, Francesco, 2017. "Building integration of semitransparent perovskite-based solar cells: Energy performance and visual comfort assessment," Applied Energy, Elsevier, vol. 194(C), pages 94-107.
    7. Wu, Qiyan & Zhang, Xiaoling & Sun, Jingwei & Ma, Zhifei & Zhou, Chen, 2016. "Locked post-fossil consumption of urban decentralized solar photovoltaic energy: A case study of an on-grid photovoltaic power supply community in Nanjing, China," Applied Energy, Elsevier, vol. 172(C), pages 1-11.
    8. Abel Velasco & Sergi Jiménez García & Alfredo Guardo & Alfred Fontanals & Mònica Egusquiza, 2017. "Assessment of the Use of Venetian Blinds as Solar Thermal Collectors in Double Skin Facades in Mediterranean Climates," Energies, MDPI, vol. 10(11), pages 1-15, November.
    9. María Herrando & Alba Ramos, 2022. "Photovoltaic-Thermal (PV-T) Systems for Combined Cooling, Heating and Power in Buildings: A Review," Energies, MDPI, vol. 15(9), pages 1-28, April.
    10. Cossu, Marco & Yano, Akira & Li, Zhi & Onoe, Mahiro & Nakamura, Hidetoshi & Matsumoto, Toshinori & Nakata, Josuke, 2016. "Advances on the semi-transparent modules based on micro solar cells: First integration in a greenhouse system," Applied Energy, Elsevier, vol. 162(C), pages 1042-1051.
    11. Wang, Meng & Peng, Jinqing & Li, Nianping & Yang, Hongxing & Wang, Chunlei & Li, Xue & Lu, Tao, 2017. "Comparison of energy performance between PV double skin facades and PV insulating glass units," Applied Energy, Elsevier, vol. 194(C), pages 148-160.
    12. Quesada, Guillermo & Rousse, Daniel & Dutil, Yvan & Badache, Messaoud & Hallé, Stéphane, 2012. "A comprehensive review of solar facades. Transparent and translucent solar facades," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2643-2651.
    13. Huh, Daihong & Choi, Hak-Jong & Byun, Minseop & Kim, Kwan & Lee, Heon, 2019. "Long-term analysis of PV module with large-area patterned anti-reflective film," Renewable Energy, Elsevier, vol. 135(C), pages 525-528.
    14. Cheng, Yuanda & Gao, Min & Dong, Jiankai & Jia, Jie & Zhao, Xudong & Li, Guiqiang, 2018. "Investigation on the daylight and overall energy performance of semi-transparent photovoltaic facades in cold climatic regions of China," Applied Energy, Elsevier, vol. 232(C), pages 517-526.
    15. Refat, Khalid H. & Sajjad, Redwan N., 2020. "Prospect of achieving net-zero energy building with semi-transparent photovoltaics: A device to system level perspective," Applied Energy, Elsevier, vol. 279(C).
    16. Wang, Meng & Peng, Jinqing & Li, Nianping & Lu, Lin & Ma, Tao & Yang, Hongxing, 2016. "Assessment of energy performance of semi-transparent PV insulating glass units using a validated simulation model," Energy, Elsevier, vol. 112(C), pages 538-548.
    17. Jayathissa, P. & Luzzatto, M. & Schmidli, J. & Hofer, J. & Nagy, Z. & Schlueter, A., 2017. "Optimising building net energy demand with dynamic BIPV shading," Applied Energy, Elsevier, vol. 202(C), pages 726-735.
    18. Han, Jun & Lu, Lin & Yang, Hongxing, 2010. "Numerical evaluation of the mixed convective heat transfer in a double-pane window integrated with see-through a-Si PV cells with low-e coatings," Applied Energy, Elsevier, vol. 87(11), pages 3431-3437, November.
    19. Yu, Guoqing & Yang, Hongxing & Luo, Daina & Cheng, Xu & Ansah, Mark Kyeredey, 2021. "A review on developments and researches of building integrated photovoltaic (BIPV) windows and shading blinds," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    20. Joaquim Romaní & Alba Ramos & Jaume Salom, 2022. "Review of Transparent and Semi-Transparent Building-Integrated Photovoltaics for Fenestration Application Modeling in Building Simulations," Energies, MDPI, vol. 15(9), pages 1-30, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:164:y:2016:i:c:p:312-320. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.