IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v156y2015icp749-755.html
   My bibliography  Save this article

Characterization of biomass combustion at high temperatures based on an upgraded single particle model

Author

Listed:
  • Li, Jun
  • Paul, Manosh C.
  • Younger, Paul L.
  • Watson, Ian
  • Hossain, Mamdud
  • Welch, Stephen

Abstract

Biomass co-firing is becoming a promising solution to reduce CO2 emissions, due to its renewability and carbon neutrality. Biomass normally has high moisture and volatile contents, complicating its combustion behavior, which is significantly different from that of coal. A computational fluid dynamics (CFD) combustion model of a single biomass particle is employed to study high-temperature rapid biomass combustion. The two-competing-rate model and kinetics/diffusion model are used to model biomass devolatilization reaction and char burnout process, respectively, in which the apparent kinetics used for those two models were from high temperatures and high heating rates tests. The particle size changes during the devolatilization and char burnout are also considered. The mass loss properties and temperature profile during the biomass devolatilization and combustion processes are predicted; and the timescales of particle heating up, drying, devolatilization, and char burnout are compared and discussed. Finally, the results shed light on the effects of particle size on the combustion behavior of biomass particle.

Suggested Citation

  • Li, Jun & Paul, Manosh C. & Younger, Paul L. & Watson, Ian & Hossain, Mamdud & Welch, Stephen, 2015. "Characterization of biomass combustion at high temperatures based on an upgraded single particle model," Applied Energy, Elsevier, vol. 156(C), pages 749-755.
  • Handle: RePEc:eee:appene:v:156:y:2015:i:c:p:749-755
    DOI: 10.1016/j.apenergy.2015.04.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915004821
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.04.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bujak, Janusz & Sitarz, Piotr & Jasiewicz, Paulina, 2018. "Fuel consumption in the thermal treatment of low-calorific industrial food processing waste," Applied Energy, Elsevier, vol. 221(C), pages 139-147.
    2. Małgorzata Dula & Artur Kraszkiewicz & Stanisław Parafiniuk, 2024. "Combustion Efficiency of Various Forms of Solid Biofuels in Terms of Changes in the Method of Fuel Feeding into the Combustion Chamber," Energies, MDPI, vol. 17(12), pages 1-20, June.
    3. Huang, Y.W. & Chen, M.Q. & Li, Y. & Guo, J., 2016. "Modeling of chemical exergy of agricultural biomass using improved general regression neural network," Energy, Elsevier, vol. 114(C), pages 1164-1175.
    4. Chen, Hui & Wang, Jie & Zheng, Yanli & Zhan, Jiao & He, Chenliu & Wang, Qiang, 2018. "Algal biofuel production coupled bioremediation of biomass power plant wastes based on Chlorella sp. C2 cultivation," Applied Energy, Elsevier, vol. 211(C), pages 296-305.
    5. Mikulčić, Hrvoje & von Berg, Eberhard & Vujanović, Milan & Wang, Xuebin & Tan, Houzhang & Duić, Neven, 2016. "Numerical evaluation of different pulverized coal and solid recovered fuel co-firing modes inside a large-scale cement calciner," Applied Energy, Elsevier, vol. 184(C), pages 1292-1305.
    6. Milićević, Aleksandar & Belošević, Srdjan & Crnomarković, Nenad & Tomanović, Ivan & Tucaković, Dragan, 2020. "Mathematical modelling and optimisation of lignite and wheat straw co-combustion in 350 MWe boiler furnace," Applied Energy, Elsevier, vol. 260(C).
    7. Roy, Dibyendu & Samanta, Samiran & Ghosh, Sudip, 2020. "Performance assessment of a biomass fuelled advanced hybrid power generation system," Renewable Energy, Elsevier, vol. 162(C), pages 639-661.
    8. Jiaao Zhu & Yun Guo & Na Chen & Baoming Chen, 2024. "A Review of the Efficient and Thermal Utilization of Biomass Waste," Sustainability, MDPI, vol. 16(21), pages 1-30, October.
    9. Gu, Tianbao & Yin, Chungen & Ma, Wenchao & Chen, Guanyi, 2019. "Municipal solid waste incineration in a packed bed: A comprehensive modeling study with experimental validation," Applied Energy, Elsevier, vol. 247(C), pages 127-139.
    10. Jiseok Lee & Seunghan Yu & Jinje Park & Hyunbin Jo & Jongkeun Park & Changkook Ryu & Yeong-gap Jeong, 2020. "Reduction of Unburned Carbon Release and NO x Emission from a Pulverized Wood Pellet Boiler Retrofitted for Fuel Switching from Coal," Energies, MDPI, vol. 13(19), pages 1-17, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:156:y:2015:i:c:p:749-755. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.