IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v136y2014icp968-978.html
   My bibliography  Save this article

In-tube performance evaluation of an air-cooled condenser with liquid–vapor separator

Author

Listed:
  • Zhong, Tianming
  • Chen, Ying
  • Hua, Nan
  • Zheng, Wenxian
  • Luo, Xianglong
  • Mo, Songping

Abstract

This study evaluates the thermal hydraulic performance of a novel liquid–vapor separation condenser (LSC). A series of experiments was performed to investigate the in-tube heat transfer coefficient and pressure drop of the LSC with varying average refrigerant quality at constant mass flux. The results were compared with the performance of a serpentine condenser (SC) and a parallel-flow condenser (PFC), with R134a as the refrigerant. Findings showed a very small change in the wall temperature of the LSC. The LSC had the lowest average condensation heat transfer coefficient among the three condensers at lower heat flux, but exceeded that of the PFC at higher heat flux. The pressure drop of the LSC was 77.1–81.4% lower than that of the SC and 57.5–64.6% lower than that of the PFC at a heat flux of 6.45kWm−2. Moreover, heat flux and condensing temperature had little influence on the pressure drop of the LSC. Based on these experimental data, the three evaluation criteria (friction power ratio, penalty factor, and minimum entropy generation number) applied to the three condensers proved that the LSC had the best thermal hydraulic performance. The lowest irreversibility of the LSC resulted from the entropy generation rate of the refrigerant side, which was the lowest among the three condensers.

Suggested Citation

  • Zhong, Tianming & Chen, Ying & Hua, Nan & Zheng, Wenxian & Luo, Xianglong & Mo, Songping, 2014. "In-tube performance evaluation of an air-cooled condenser with liquid–vapor separator," Applied Energy, Elsevier, vol. 136(C), pages 968-978.
  • Handle: RePEc:eee:appene:v:136:y:2014:i:c:p:968-978
    DOI: 10.1016/j.apenergy.2014.07.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261914007144
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.07.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hua, Nan & Chen, Ying & Chen, Erxiong & Deng, Lisheng & Zheng, Wenxian & Yang, Zhen, 2013. "Prediction and verification of the thermodynamic performance of vapor–liquid separation condenser," Energy, Elsevier, vol. 58(C), pages 384-397.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luo, Xianglong & Wei, Youxing & Qiu, Guanfu & Liang, Yingzong & Chen, Jianyong & Yang, Zhi & Wang, Chao & Chen, Ying, 2020. "Simultaneous design and off-design operation optimization of a waste heat-driven organic Rankine cycle using a multi-period mathematical programming method," Energy, Elsevier, vol. 213(C).
    2. Luo, Xianglong & Yi, Zhitong & Zhang, Bingjian & Mo, Songping & Wang, Chao & Song, Mengjie & Chen, Ying, 2017. "Mathematical modelling and optimization of the liquid separation condenser used in organic Rankine cycle," Applied Energy, Elsevier, vol. 185(P2), pages 1309-1323.
    3. Li, Jian & Liu, Qiang & Duan, Yuanyuan & Yang, Zhen, 2017. "Performance analysis of organic Rankine cycles using R600/R601a mixtures with liquid-separated condensation," Applied Energy, Elsevier, vol. 190(C), pages 376-389.
    4. Li, Jian & Hu, Shuozhuo & Yang, Fubin & Duan, Yuanyuan & Yang, Zhen, 2019. "Thermo-economic performance evaluation of emerging liquid-separated condensation method in single-pressure and dual-pressure evaporation organic Rankine cycle systems," Applied Energy, Elsevier, vol. 256(C).
    5. Li, Jian & Liu, Qiang & Ge, Zhong & Duan, Yuanyuan & Yang, Zhen & Di, Jiawei, 2017. "Optimized liquid-separated thermodynamic states for working fluids of organic Rankine cycles with liquid-separated condensation," Energy, Elsevier, vol. 141(C), pages 652-660.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luo, Xianglong & Yi, Zhitong & Zhang, Bingjian & Mo, Songping & Wang, Chao & Song, Mengjie & Chen, Ying, 2017. "Mathematical modelling and optimization of the liquid separation condenser used in organic Rankine cycle," Applied Energy, Elsevier, vol. 185(P2), pages 1309-1323.
    2. Li, Jian & Liu, Qiang & Ge, Zhong & Duan, Yuanyuan & Yang, Zhen & Di, Jiawei, 2017. "Optimized liquid-separated thermodynamic states for working fluids of organic Rankine cycles with liquid-separated condensation," Energy, Elsevier, vol. 141(C), pages 652-660.
    3. Li, Jian & Hu, Shuozhuo & Yang, Fubin & Duan, Yuanyuan & Yang, Zhen, 2019. "Thermo-economic performance evaluation of emerging liquid-separated condensation method in single-pressure and dual-pressure evaporation organic Rankine cycle systems," Applied Energy, Elsevier, vol. 256(C).
    4. Luo, Xianglong & Wei, Youxing & Qiu, Guanfu & Liang, Yingzong & Chen, Jianyong & Yang, Zhi & Wang, Chao & Chen, Ying, 2020. "Simultaneous design and off-design operation optimization of a waste heat-driven organic Rankine cycle using a multi-period mathematical programming method," Energy, Elsevier, vol. 213(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:136:y:2014:i:c:p:968-978. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.