Prediction of the theoretical capacity of non-aqueous lithium-air batteries
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2013.04.031
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Tan, Peng & Chen, Bin & Xu, Haoran & Cai, Weizi & He, Wei & Ni, Meng, 2019. "Porous Co3O4 nanoplates as the active material for rechargeable Zn-air batteries with high energy efficiency and cycling stability," Energy, Elsevier, vol. 166(C), pages 1241-1248.
- Tan, P. & Jiang, H.R. & Zhu, X.B. & An, L. & Jung, C.Y. & Wu, M.C. & Shi, L. & Shyy, W. & Zhao, T.S., 2017. "Advances and challenges in lithium-air batteries," Applied Energy, Elsevier, vol. 204(C), pages 780-806.
- Tan, P. & Shyy, W. & Zhao, T.S. & Zhang, R.H. & Zhu, X.B., 2016. "Effects of moist air on the cycling performance of non-aqueous lithium-air batteries," Applied Energy, Elsevier, vol. 182(C), pages 569-575.
- Ren, Y.X. & Zhao, T.S. & Tan, P. & Wei, Z.H. & Zhou, X.L., 2017. "Modeling of an aprotic Li-O2 battery incorporating multiple-step reactions," Applied Energy, Elsevier, vol. 187(C), pages 706-716.
- Esfahanian, Vahid & Dalakeh, Muhammad Taghi & Aghamirzaie, Navid, 2019. "Mathematical modeling of oxygen crossover in a lithium-oxygen battery," Applied Energy, Elsevier, vol. 250(C), pages 1356-1365.
- Wang, Limei & Cheng, Yong & Zhao, Xiuliang, 2015. "Influence of connecting plate resistance upon LiFePO4 battery performance," Applied Energy, Elsevier, vol. 147(C), pages 353-360.
- Tan, Peng & Ni, Meng & Shao, Zongping & Chen, Bin & Kong, Wei, 2017. "Numerical investigation of a non-aqueous lithium-oxygen battery based on lithium superoxide as the discharge product," Applied Energy, Elsevier, vol. 203(C), pages 254-266.
- Xiao, Xu & Zhang, Zhuojun & Yu, Wentao & Shang, Wenxu & Ma, Yanyi & Tan, Peng, 2022. "Achieving a high-specific-energy lithium-carbon dioxide battery by implementing a bi-side-diffusion structure," Applied Energy, Elsevier, vol. 328(C).
More about this item
Keywords
Lithium-air battery; Non-aqueous electrolyte; Capacity;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:109:y:2013:i:c:p:275-282. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.