IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v496y2025ics0096300325000712.html
   My bibliography  Save this article

A note on the local behavior of the Taylor method for stiff ODEs

Author

Listed:
  • Forrier, Philip P.
  • Gimeno, Joan
  • Jorba, Àngel

Abstract

In this note we study the behavior of the coefficients of the Taylor method when computing the numerical solution of stiff Ordinary Differential Equations. First, we derive an asymptotic formula for the growth of the stability region w.r.t. the order of the Taylor method. Then, we analyze the behavior of the Taylor coefficients of the solution when the equation is stiff. Using jet transport, we show that the coefficients computed with a floating point arithmetic of arbitrary precision have an absolute error that depends on the variational equations of the solution, which can have a dominant exponential growth in stiff problems. This is naturally related to the characterization of stiffness presented by Söderlind et al. [32], and allows to discuss why explicit solvers need a stepsize reduction when dealing with stiff systems. We explore how high-order methods can alleviate this restriction when high precision computations are required. We provide numerical experiments with classical stiff problems and perform extended precision computations to demonstrate this behavior.

Suggested Citation

  • Forrier, Philip P. & Gimeno, Joan & Jorba, Àngel, 2025. "A note on the local behavior of the Taylor method for stiff ODEs," Applied Mathematics and Computation, Elsevier, vol. 496(C).
  • Handle: RePEc:eee:apmaco:v:496:y:2025:i:c:s0096300325000712
    DOI: 10.1016/j.amc.2025.129344
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300325000712
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2025.129344?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:496:y:2025:i:c:s0096300325000712. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.