IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v488y2025ics0096300324005903.html
   My bibliography  Save this article

A step function based recursion method for 0/1 deep neural networks

Author

Listed:
  • Zhang, Hui
  • Zhou, Shenglong
  • Li, Geoffrey Ye
  • Xiu, Naihua
  • Wang, Yiju

Abstract

The deep neural network with step function activation (0/1 DNNs) is a fundamental composite model in deep learning which has high efficiency and robustness to outliers. However, due to the discontinuity and lacking subgradient information of the 0/1 DNNs model, prior researches are largely focused on designing continuous functions to approximate the step activation and developing continuous optimization methods. In this paper, by introducing two sets of network node variables into the 0/1 DNNs and by exploring the composite structure of the resulted model, the 0/1 DNNs is decomposed into a unary optimization model associated with the step function and three derivational optimization subproblems associated with the other variables. For the unary optimization model and two derivational optimization subproblems, we present a closed form solution, and for the third derivational optimization subproblem, we propose an efficient proximal method. Based on this, a globally convergent step function based recursion method for the 0/1 DNNs is developed. The efficiency and performance of the proposed algorithm are validated via theoretical analysis as well as some illustrative numerical examples on classifying MNIST, FashionMNIST and Cifar10 datasets.

Suggested Citation

  • Zhang, Hui & Zhou, Shenglong & Li, Geoffrey Ye & Xiu, Naihua & Wang, Yiju, 2025. "A step function based recursion method for 0/1 deep neural networks," Applied Mathematics and Computation, Elsevier, vol. 488(C).
  • Handle: RePEc:eee:apmaco:v:488:y:2025:i:c:s0096300324005903
    DOI: 10.1016/j.amc.2024.129129
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300324005903
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2024.129129?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:488:y:2025:i:c:s0096300324005903. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.