IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v488y2025ics0096300324005873.html
   My bibliography  Save this article

Distributed adaptive moving horizon estimation for multi-sensor networks subject to quantization effects

Author

Listed:
  • Lv, Yuan-Wei
  • Yang, Guang-Hong
  • Dimirovski, Georgi Marko

Abstract

This paper investigates the distributed state estimation problem for multi-sensor networks with quantized measurements. Within the Bayesian framework, a distributed adaptive moving horizon estimation algorithm is developed. Unlike the existing methods regarding quantized errors roughly as bounded uncertainties, the posterior distributions of the errors are demanded to be derived. To overcome the difficulty of evaluating the posterior distributions for series of the states and quantized errors jointly, the variational Bayesian methodology is adopted to approximate the true distributions. Based on the fixed-point iteration method, the update rules are analytically derived, with the convergence criterion provided. Furthermore, by incorporating the average consensus algorithm into the prediction process, all sensors can achieve consensus on their estimates in a distributed manner. Finally, a numerical example of target tracking under logarithmic and uniform quantization effects is given to illustrate the validity of the proposed algorithm.

Suggested Citation

  • Lv, Yuan-Wei & Yang, Guang-Hong & Dimirovski, Georgi Marko, 2025. "Distributed adaptive moving horizon estimation for multi-sensor networks subject to quantization effects," Applied Mathematics and Computation, Elsevier, vol. 488(C).
  • Handle: RePEc:eee:apmaco:v:488:y:2025:i:c:s0096300324005873
    DOI: 10.1016/j.amc.2024.129126
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300324005873
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2024.129126?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:488:y:2025:i:c:s0096300324005873. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.