IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v487y2025ics0096300324005411.html
   My bibliography  Save this article

Efficient spectral element method for the Euler equations on unbounded domains

Author

Listed:
  • Tissaoui, Yassine
  • Kelly, James F.
  • Marras, Simone

Abstract

Mitigating the impact of waves leaving a numerical domain has been a persistent challenge in numerical modeling. Reducing wave reflection at the domain boundary is crucial for accurate simulations. Absorbing layers, while common, often incur significant computational costs. This paper introduces an efficient application of a Legendre-Laguerre basis for absorbing layers for two-dimensional non-linear compressible Euler equations. The method couples a spectral-element bounded domain with a semi-infinite region, employing a tensor product of Lagrange and scaled Laguerre basis functions. Semi-infinite elements are used in the absorbing layer with Rayleigh damping. In comparison to existing methods with similar absorbing layer extensions, this approach, a pioneering application to the Euler equations of compressible and stratified flows, demonstrates substantial computational savings. The study marks the first application of semi-infinite elements to mitigate wave reflection in the solution of the Euler equations, particularly in nonhydrostatic atmospheric modeling. A comprehensive set of tests demonstrates the method's versatility for general systems of conservation laws, with a focus on its effectiveness in damping vertically propagating mountain gravity waves, a benchmark for atmospheric models. Across all tests, the model presented in this paper consistently exhibits notable performance improvements compared to a traditional Rayleigh damping approach.

Suggested Citation

  • Tissaoui, Yassine & Kelly, James F. & Marras, Simone, 2025. "Efficient spectral element method for the Euler equations on unbounded domains," Applied Mathematics and Computation, Elsevier, vol. 487(C).
  • Handle: RePEc:eee:apmaco:v:487:y:2025:i:c:s0096300324005411
    DOI: 10.1016/j.amc.2024.129080
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300324005411
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2024.129080?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:487:y:2025:i:c:s0096300324005411. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.