IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v486y2025ics0096300324005174.html
   My bibliography  Save this article

Stable generalized finite element for two-dimensional and three-dimensional non-homogeneous interface problems

Author

Listed:
  • Li, Jiajun
  • Jiang, Ying

Abstract

In this paper, we propose a Stable Generalized Finite Element Method (SGFEM) to address non-homogeneous elliptic interface problems with discontinuous coefficients. Our approach utilizes the homogenization method to transform non-homogeneous interface conditions into homogeneous ones, thereby facilitating the application of the SGFEM. Specifically, we construct functions that satisfy the jump conditions, streamlining the problem-solving process. In the SGFEM, enrichment functions are used to efficiently construct these specialized functions, reducing the computational demands of the homogenization method. Notably, this method involves only calculations of additional right-hand terms near the interface, which require significantly less computation compared to the calculation of the stiffness matrix, thus avoiding any alterations to the stiffness matrix and preserving the stability and robustness of the SGFEM. We apply our method in both two-dimensional and three-dimensional scenarios, employing distinct strategies for each. In the 2D examples, the displacement homogenization method simplifies the implementation by addressing only the displacement jumps, thereby reducing the computational load. In the 3D examples, the synchronous homogenization method further simplifies numerical implementation by eliminating surface integrals on the interface. Through error analysis and numerical experiments, we demonstrate the efficiency and optimal convergence of our proposed method.

Suggested Citation

  • Li, Jiajun & Jiang, Ying, 2025. "Stable generalized finite element for two-dimensional and three-dimensional non-homogeneous interface problems," Applied Mathematics and Computation, Elsevier, vol. 486(C).
  • Handle: RePEc:eee:apmaco:v:486:y:2025:i:c:s0096300324005174
    DOI: 10.1016/j.amc.2024.129056
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300324005174
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2024.129056?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:486:y:2025:i:c:s0096300324005174. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.