IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v479y2024ics0096300324003473.html
   My bibliography  Save this article

Graphs with large (1,2)-rainbow connection numbers

Author

Listed:
  • Doan, Trung Duy
  • Do, Thi Thanh Chau
  • Schiermeyer, Ingo

Abstract

Let G be an edge-colored graph. If every subpath of length at most l+1 within a path P in a graph G consists of uniquely colored edges, then P is called an l-rainbow path. A connected graph G is deemed (1,2)-rainbow connected if there exists at least one 2-rainbow path connecting two distinct vertices within G. The minimum number of colors needed to attain (1,2)-rainbow connectedness in a connected graph G, represented as rc1,2(G), is referred to as the (1,2)-rainbow connection number. If G is a nontrivial connected graph of size m, then rc1,2(G)=m if and only if G is the star or double star of size m. Our main goal is to identify all connected graphs G of size m that satisfy the condition m−3≤rc1,2(G)≤m−1.

Suggested Citation

  • Doan, Trung Duy & Do, Thi Thanh Chau & Schiermeyer, Ingo, 2024. "Graphs with large (1,2)-rainbow connection numbers," Applied Mathematics and Computation, Elsevier, vol. 479(C).
  • Handle: RePEc:eee:apmaco:v:479:y:2024:i:c:s0096300324003473
    DOI: 10.1016/j.amc.2024.128886
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300324003473
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2024.128886?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:479:y:2024:i:c:s0096300324003473. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.