IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v478y2024ics0096300324003035.html
   My bibliography  Save this article

Three paths to rational curves with rational arc length

Author

Listed:
  • Schröcker, Hans-Peter
  • Šír, Zbyněk

Abstract

We solve the so far open problem of constructing all spatial rational curves with rational arc length functions. More precisely, we present three different methods for this construction. The first method adapts a recent approach of (Kalkan et al. 2022) to rational PH curves and requires solving a modestly sized system of linear equations. The second constructs the curve by imposing zero-residue conditions, thus extending ideas of previous papers by (Farouki and Sakkalis 2019) and the authors themselves (Schröcker and Šír 2023). The third method generalizes the dual approach of (Pottmann 1995) from planar to spatial curves. The three methods share the same quaternion based representation in which not only the PH curve but also its arc length function are compactly expressed. We also present a new proof based on the quaternion polynomial factorization theory of the well known characterization of the Pythagorean quadruples.

Suggested Citation

  • Schröcker, Hans-Peter & Šír, Zbyněk, 2024. "Three paths to rational curves with rational arc length," Applied Mathematics and Computation, Elsevier, vol. 478(C).
  • Handle: RePEc:eee:apmaco:v:478:y:2024:i:c:s0096300324003035
    DOI: 10.1016/j.amc.2024.128842
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300324003035
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2024.128842?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Knez, Marjeta & Pelosi, Francesca & Sampoli, Maria Lucia, 2022. "Construction of G2 planar Hermite interpolants with prescribed arc lengths," Applied Mathematics and Computation, Elsevier, vol. 426(C).
    2. Farouki, Rida T. & Knez, Marjeta & Vitrih, Vito & Žagar, Emil, 2021. "Spatial C2 closed loops of prescribed arc length defined by Pythagorean-hodograph curves," Applied Mathematics and Computation, Elsevier, vol. 391(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schröcker, Hans-Peter & Šír, Zbyněk, 2023. "Optimal interpolation with spatial rational Pythagorean hodograph curves," Applied Mathematics and Computation, Elsevier, vol. 458(C).
    2. Yuxuan Zhou & Yajuan Li & Chongyang Deng, 2022. "G 2 Hermite Interpolation by Segmented Spirals," Mathematics, MDPI, vol. 10(24), pages 1-20, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:478:y:2024:i:c:s0096300324003035. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.