IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v476y2024ics0096300324002492.html
   My bibliography  Save this article

Optimal bipartite consensus control for heterogeneous unknown multi-agent systems via reinforcement learning

Author

Listed:
  • Meng, Hao
  • Pang, Denghao
  • Cao, Jinde
  • Guo, Yechen
  • Niazi, Azmat Ullah Khan

Abstract

This study focuses on addressing optimal bipartite consensus control (OBCC) problems in heterogeneous multi-agent systems (MASs) without relying on the agents' dynamics. Motivated by the need for model-free and optimal consensus control in complex MASs, a novel distributed scheme utilizing reinforcement learning (RL) is proposed to overcome these challenges. The MAS network is randomly partitioned into sub-networks where agents collaborate within each subgroup to attain tracking control and ensure convergence of positions and speeds to a common value. However, agents from distinct subgroups compete to achieve diverse tracking objectives. Furthermore, the heterogeneous MASs considered have unknown first and second-order dynamics, adding to the complexity of the problem. To address the OBCC issue, the policy iteration (PI) algorithm is used to acquire solutions for discrete-time Hamilton-Jacobi-Bellman (HJB) equations while implementing a data-driven actor-critic neural network (ACNN) framework. Ultimately, the accuracy of our proposed approach is confirmed through the presentation of numerical simulations.

Suggested Citation

  • Meng, Hao & Pang, Denghao & Cao, Jinde & Guo, Yechen & Niazi, Azmat Ullah Khan, 2024. "Optimal bipartite consensus control for heterogeneous unknown multi-agent systems via reinforcement learning," Applied Mathematics and Computation, Elsevier, vol. 476(C).
  • Handle: RePEc:eee:apmaco:v:476:y:2024:i:c:s0096300324002492
    DOI: 10.1016/j.amc.2024.128785
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300324002492
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2024.128785?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arockia Samy, Stephen & Anbalagan, Pratap, 2023. "Disturbance observer-based integral sliding-mode control design for leader-following consensus of multi-agent systems and its application to car-following model," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    2. Peng, Zhinan & Hu, Jiangping & Shi, Kaibo & Luo, Rui & Huang, Rui & Ghosh, Bijoy Kumar & Huang, Jiuke, 2020. "A novel optimal bipartite consensus control scheme for unknown multi-agent systems via model-free reinforcement learning," Applied Mathematics and Computation, Elsevier, vol. 369(C).
    3. Parivallal, A. & Sakthivel, R. & Wang, Chao, 2022. "Output feedback control for bipartite consensus of nonlinear multi-agent systems with disturbances and switching topologies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    4. Zhou, Min & Wang, JinRong & Shen, Dong, 2023. "Iterative learning control for continuous-time multi-agent differential inclusion systems with full learnability," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Baoxing & Han, Tao & Xiao, Bo & Zhan, Xi-Sheng & Yan, Huaicheng, 2022. "Leader-following bipartite consensus of multiple uncertain Euler-Lagrange systems under deception attacks," Applied Mathematics and Computation, Elsevier, vol. 428(C).
    2. Wang, Yun & Fang, Tian & Kong, Qingkai & Li, Feng, 2024. "Zero-sum game-based optimal control for discrete-time Markov jump systems: A parallel off-policy Q-learning method," Applied Mathematics and Computation, Elsevier, vol. 467(C).
    3. Zhao, Huarong & Peng, Li & Yu, Hongnian, 2022. "Quantized model-free adaptive iterative learning bipartite consensus tracking for unknown nonlinear multi-agent systems," Applied Mathematics and Computation, Elsevier, vol. 412(C).
    4. Wang, Xiaoling & Su, Housheng, 2020. "Completely model-free RL-based consensus of continuous-time multi-agent systems," Applied Mathematics and Computation, Elsevier, vol. 382(C).
    5. Hou, Rui & Cui, Lizhi & Bu, Xuhui & Yang, Junqi, 2021. "Distributed formation control for multiple non-holonomic wheeled mobile robots with velocity constraint by using improved data-driven iterative learning," Applied Mathematics and Computation, Elsevier, vol. 395(C).
    6. Li, Xiaoqing & Nguang, Sing Kiong & She, Kun & Cheng, Jun & Zhong, Shouming, 2021. "Resilient controller synthesis for Markovian jump systems with probabilistic faults and gain fluctuations under stochastic sampling operational mechanism," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    7. Griffin, Christopher & Squicciarini, Anna & Jia, Feiran, 2022. "Consensus in complex networks with noisy agents and peer pressure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    8. Wang, Changlin, 2024. "Social media platform-oriented topic mining and information security analysis by big data and deep convolutional neural network," Technological Forecasting and Social Change, Elsevier, vol. 199(C).
    9. Jinfeng Wang & Hui Dong & Fenghua Chen & Mai The Vu & Ali Dokht Shakibjoo & Ardashir Mohammadzadeh, 2023. "Formation Control of Non-Holonomic Mobile Robots: Predictive Data-Driven Fuzzy Compensator," Mathematics, MDPI, vol. 11(8), pages 1-21, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:476:y:2024:i:c:s0096300324002492. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.