IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v475y2024ics0096300324001991.html
   My bibliography  Save this article

Enhancing continuous time series modelling with a latent ODE-LSTM approach

Author

Listed:
  • Coelho, C.
  • P. Costa, M. Fernanda
  • Ferrás, L.L.

Abstract

Due to their dynamic properties such as irregular sampling rate and high-frequency sampling, Continuous Time Series (CTS) are found in many applications. Since CTS with irregular sampling rate are difficult to model with standard Recurrent Neural Networks (RNNs), RNNs have been generalised to have continuous-time hidden dynamics defined by a Neural Ordinary Differential Equation (Neural ODE), leading to the ODE-RNN model. Another approach that provides a better modelling is that of the Latent ODE model, which constructs a continuous-time model where a latent state is defined at all times. The Latent ODE model uses a standard RNN as the encoder and a Neural ODE as the decoder. However, since the RNN encoder leads to difficulties with missing data and ill-defined latent variables, a Latent ODE-RNN model has recently been proposed that uses a ODE-RNN model as the encoder instead.

Suggested Citation

  • Coelho, C. & P. Costa, M. Fernanda & Ferrás, L.L., 2024. "Enhancing continuous time series modelling with a latent ODE-LSTM approach," Applied Mathematics and Computation, Elsevier, vol. 475(C).
  • Handle: RePEc:eee:apmaco:v:475:y:2024:i:c:s0096300324001991
    DOI: 10.1016/j.amc.2024.128727
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300324001991
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2024.128727?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Umar Muhammad Mustapha Kumshe & Zakariya Muhammad Abdulhamid & Baba Ahmad Mala & Tasiu Muazu & Abdullahi Uwaisu Muhammad & Ousmane Sangary & Abdoul Fatakhou Ba & Sani Tijjani & Jibril Muhammad Adam & , 2024. "Improving Short-term Daily Streamflow Forecasting Using an Autoencoder Based CNN-LSTM Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(15), pages 5973-5989, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:475:y:2024:i:c:s0096300324001991. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.