IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v473y2024ics0096300324001206.html
   My bibliography  Save this article

Domination of triangulated discs and maximal outerplanar graphs

Author

Listed:
  • Renders, Jarne
  • Tokunaga, Shin-ichi
  • Zamfirescu, Carol T.

Abstract

Given an infinite family of graphs, its domination ratio is the smallest real k such that for every large enough graph in the family, the ratio between its domination number and order is at most k. We give bounds for the domination ratios of various families of triangulated discs, disproving two conjectures of Tokunaga. For instance, we show that the domination ratio of triangulated discs of minimum degree 3 is at least 3/10. We also give a natural extension of a theorem on the domination number of maximal outerplane graphs, proven by Campos and Wakabayashi, and independently Tokunaga. Motivated by the Matheson-Tarjan Conjecture, we present observations on dominating triangulations via Jackson-Yu decomposition trees as well as an approach on how to efficiently dominate, given a triangulation, many large subtriangulations thereof. Throughout the paper, results are accompanied by computational experiments.

Suggested Citation

  • Renders, Jarne & Tokunaga, Shin-ichi & Zamfirescu, Carol T., 2024. "Domination of triangulated discs and maximal outerplanar graphs," Applied Mathematics and Computation, Elsevier, vol. 473(C).
  • Handle: RePEc:eee:apmaco:v:473:y:2024:i:c:s0096300324001206
    DOI: 10.1016/j.amc.2024.128648
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300324001206
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2024.128648?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:473:y:2024:i:c:s0096300324001206. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.