IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v471y2024ics0096300324000778.html
   My bibliography  Save this article

Convergence rates for critical point regularization

Author

Listed:
  • Obmann, Daniel
  • Haltmeier, Markus

Abstract

Tikhonov regularization involves minimizing the combination of a data discrepancy term and a regularizing term, and is the standard approach for solving inverse problems. The use of non-convex regularizers, such as those defined by trained neural networks, has been shown to be effective in many cases. However, finding global minimizers in non-convex situations can be challenging, making existing theory inapplicable. A recent development in regularization theory relaxes this requirement by providing convergence based on critical points instead of strict minimizers. This paper investigates convergence rates for the regularization with critical points using Bregman distances. Furthermore, we show that when implementing near-minimization through an iterative algorithm, a finite number of iterations is sufficient without affecting convergence rates.

Suggested Citation

  • Obmann, Daniel & Haltmeier, Markus, 2024. "Convergence rates for critical point regularization," Applied Mathematics and Computation, Elsevier, vol. 471(C).
  • Handle: RePEc:eee:apmaco:v:471:y:2024:i:c:s0096300324000778
    DOI: 10.1016/j.amc.2024.128605
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300324000778
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2024.128605?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:471:y:2024:i:c:s0096300324000778. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.