IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v468y2024ics0096300323006422.html
   My bibliography  Save this article

Circulant decomposition of a matrix and the eigenvalues of Toeplitz type matrices

Author

Listed:
  • Hariprasad, M.
  • Venkatapathi, Murugesan

Abstract

We begin by showing that any n×n matrix can be decomposed into a sum of n circulant matrices with periodic relaxations on the unit circle. This decomposition is orthogonal with respect to a Frobenius inner product, allowing recursive iterations for these circulant components. It is also shown that the dominance of a few circulant components in the matrix allows sparse similarity transformations using Fast-Fourier-transform (FFT) operations. This enables the evaluation of all eigenvalues of dense Toeplitz, block-Toeplitz, and other periodic or quasi-periodic matrices, to a reasonable approximation in O(n2) arithmetic operations. The utility of the approximate similarity transformation in preconditioning linear solvers is also demonstrated.

Suggested Citation

  • Hariprasad, M. & Venkatapathi, Murugesan, 2024. "Circulant decomposition of a matrix and the eigenvalues of Toeplitz type matrices," Applied Mathematics and Computation, Elsevier, vol. 468(C).
  • Handle: RePEc:eee:apmaco:v:468:y:2024:i:c:s0096300323006422
    DOI: 10.1016/j.amc.2023.128473
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300323006422
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2023.128473?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M․, Hariprasad & Venkatapathi, Murugesan, 2021. "Semi-analytical solutions for eigenvalue problems of chains and periodic graphs," Applied Mathematics and Computation, Elsevier, vol. 411(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:468:y:2024:i:c:s0096300323006422. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.