Node-bound communities for partition of unity interpolation on graphs
Author
Abstract
Suggested Citation
DOI: 10.1016/j.amc.2023.128502
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Cavoretto, Roberto & De Rossi, Alessandra, 2020. "Error indicators and refinement strategies for solving Poisson problems through a RBF partition of unity collocation scheme," Applied Mathematics and Computation, Elsevier, vol. 369(C).
- Cavoretto, R. & De Rossi, A. & Perracchione, E., 2023. "Learning with Partition of Unity-based Kriging Estimators," Applied Mathematics and Computation, Elsevier, vol. 448(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Raeisi, Banafsheh & Fardi, Mojtaba & Darani, Mohammadreza Ahmadi, 2024. "RBF-based partition of unity methods for two-dimensional time-dependent PDEs: Numerical and theoretical aspects," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 226(C), pages 152-171.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Nikan, O. & Avazzadeh, Z., 2022. "A locally stabilized radial basis function partition of unity technique for the sine–Gordon system in nonlinear optics," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 199(C), pages 394-413.
- Cavoretto, Roberto, 2022. "Adaptive LOOCV-based kernel methods for solving time-dependent BVPs," Applied Mathematics and Computation, Elsevier, vol. 429(C).
- Cavoretto, R. & De Rossi, A. & Perracchione, E., 2023. "Learning with Partition of Unity-based Kriging Estimators," Applied Mathematics and Computation, Elsevier, vol. 448(C).
- Cavoretto, Roberto & De Rossi, Alessandra, 2020. "Adaptive procedures for meshfree RBF unsymmetric and symmetric collocation methods," Applied Mathematics and Computation, Elsevier, vol. 382(C).
- Nikan, O. & Avazzadeh, Z., 2021. "A localisation technique based on radial basis function partition of unity for solving Sobolev equation arising in fluid dynamics," Applied Mathematics and Computation, Elsevier, vol. 401(C).
More about this item
Keywords
Partition of unity methods; Kernel-based approximation; Graph basis functions; Graph signal processing; Graph theory;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:467:y:2024:i:c:s0096300323006719. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.