IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v465y2024ics0096300323006033.html
   My bibliography  Save this article

Continuity-sets of pullback random attractors for discrete porous media equations with colored noise

Author

Listed:
  • Li, Yangrong
  • Wang, Fengling
  • Xia, Huan

Abstract

For a random non-autonomous porous media lattice system driven by nonlinear colored noise, we prove the unique existence and local compactness of a pullback random attractor. We then mainly study the continuity-set (the set of all points of continuity) of the pullback random attractor on the time-sample plane with respect to the Hausdorff metric. With some calculations, we find that the continuity-set has four geometrical numerical features:

Suggested Citation

  • Li, Yangrong & Wang, Fengling & Xia, Huan, 2024. "Continuity-sets of pullback random attractors for discrete porous media equations with colored noise," Applied Mathematics and Computation, Elsevier, vol. 465(C).
  • Handle: RePEc:eee:apmaco:v:465:y:2024:i:c:s0096300323006033
    DOI: 10.1016/j.amc.2023.128434
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300323006033
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2023.128434?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ma, Qiaozhen & Xu, Ling, 2017. "Random attractors for the coupled suspension bridge equations with white noises," Applied Mathematics and Computation, Elsevier, vol. 306(C), pages 38-48.
    2. Wang, Renhai & Li, Yangrong, 2019. "Regularity and backward compactness of attractors for non-autonomous lattice systems with random coefficients," Applied Mathematics and Computation, Elsevier, vol. 354(C), pages 86-102.
    3. Yang, Shuang & Li, Yangrong, 2022. "Numerical attractors and approximations for stochastic or deterministic sine-Gordon lattice equations," Applied Mathematics and Computation, Elsevier, vol. 413(C).
    4. Li, Fuzhi & Xu, Dongmei, 2022. "Backward regularity of attractors for lattice FitzHugh-Nagumo system with double random coefficients," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    5. Zhou, Shengfan & Tian, Yongxiao & Wang, Zhaojuan, 2016. "Fractal dimension of random attractors for stochastic non-autonomous reaction–diffusion equations," Applied Mathematics and Computation, Elsevier, vol. 276(C), pages 80-95.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Fuzhi & Xu, Dongmei, 2022. "Backward regularity of attractors for lattice FitzHugh-Nagumo system with double random coefficients," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    2. Wang, Renhai & Li, Yangrong, 2019. "Regularity and backward compactness of attractors for non-autonomous lattice systems with random coefficients," Applied Mathematics and Computation, Elsevier, vol. 354(C), pages 86-102.
    3. Yang, Shuang & Li, Yangrong, 2022. "Numerical attractors and approximations for stochastic or deterministic sine-Gordon lattice equations," Applied Mathematics and Computation, Elsevier, vol. 413(C).
    4. Zhao, Wenqiang & Zhang, Yijin, 2016. "Compactness and attracting of random attractors for non-autonomous stochastic lattice dynamical systems in weighted space ℓρp," Applied Mathematics and Computation, Elsevier, vol. 291(C), pages 226-243.
    5. Khalili Golmankhaneh, Alireza & Tejado, Inés & Sevli, Hamdullah & Valdés, Juan E. Nápoles, 2023. "On initial value problems of fractal delay equations," Applied Mathematics and Computation, Elsevier, vol. 449(C).
    6. Da, Nguyen Tien, 2023. "A new result on the fractal dimension estimates of random attractor for non-autonomous random 2D stochastic dynamical type systems," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:465:y:2024:i:c:s0096300323006033. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.