The max-sum inverse median location problem on trees with budget constraint
Author
Abstract
Suggested Citation
DOI: 10.1016/j.amc.2023.128296
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Nguyen, Kien Trung & Chassein, André, 2015. "The inverse convex ordered 1-median problem on trees under Chebyshev norm and Hamming distance," European Journal of Operational Research, Elsevier, vol. 247(3), pages 774-781.
- Kien Trung Nguyen, 2019. "The inverse 1-center problem on cycles with variable edge lengths," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 27(1), pages 263-274, March.
- Kien Trung Nguyen & Nguyen Thanh Hung, 2020. "The inverse connected p-median problem on block graphs under various cost functions," Annals of Operations Research, Springer, vol. 292(1), pages 97-112, September.
- Behrooz Alizadeh & Rainer Burkard, 2013. "A linear time algorithm for inverse obnoxious center location problems on networks," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 21(3), pages 585-594, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Behrooz Alizadeh & Somayeh Bakhteh, 2017. "A modified firefly algorithm for general inverse p-median location problems under different distance norms," OPSEARCH, Springer;Operational Research Society of India, vol. 54(3), pages 618-636, September.
- Nguyen, Kien Trung & Hung, Nguyen Thanh, 2021. "The minmax regret inverse maximum weight problem," Applied Mathematics and Computation, Elsevier, vol. 407(C).
- Esmaeil Afrashteh & Behrooz Alizadeh & Fahimeh Baroughi & Kien Trung Nguyen, 2018. "Linear Time Optimal Approaches for Max-Profit Inverse 1-Median Location Problems," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 35(05), pages 1-22, October.
- Kien Trung Nguyen, 2016. "Inverse 1-Median Problem on Block Graphs with Variable Vertex Weights," Journal of Optimization Theory and Applications, Springer, vol. 168(3), pages 944-957, March.
- Kien Trung Nguyen, 2019. "The inverse 1-center problem on cycles with variable edge lengths," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 27(1), pages 263-274, March.
- Alizadeh, Behrooz & Afrashteh, Esmaeil, 2020. "Budget-constrained inverse median facility location problem on tree networks," Applied Mathematics and Computation, Elsevier, vol. 375(C).
- Le Xuan Dai & Kien Trung Nguyen & Le Phuong Thao & Pham Thi Vui, 2024. "Some robust inverse median problems on trees with interval costs," Computational Management Science, Springer, vol. 21(2), pages 1-25, December.
- Kien Trung Nguyen & Nguyen Thanh Hung, 2020. "The inverse connected p-median problem on block graphs under various cost functions," Annals of Operations Research, Springer, vol. 292(1), pages 97-112, September.
- Chassein, André & Goerigk, Marc, 2018. "Variable-sized uncertainty and inverse problems in robust optimization," European Journal of Operational Research, Elsevier, vol. 264(1), pages 17-28.
- Esmaeil Afrashteh & Behrooz Alizadeh & Fahimeh Baroughi, 2020. "Optimal approaches for upgrading selective obnoxious p-median location problems on tree networks," Annals of Operations Research, Springer, vol. 289(2), pages 153-172, June.
- Xinqiang Qian & Xiucui Guan & Junhua Jia & Qiao Zhang & Panos M. Pardalos, 2023. "Vertex quickest 1-center location problem on trees and its inverse problem under weighted $$l_\infty $$ l ∞ norm," Journal of Global Optimization, Springer, vol. 85(2), pages 461-485, February.
- Xianyue Li & Xichao Shu & Huijing Huang & Jingjing Bai, 2019. "Capacitated partial inverse maximum spanning tree under the weighted Hamming distance," Journal of Combinatorial Optimization, Springer, vol. 38(4), pages 1005-1018, November.
- Trung Kien Nguyen & Nguyen Thanh Hung & Huong Nguyen-Thu, 2020. "A linear time algorithm for the p-maxian problem on trees with distance constraint," Journal of Combinatorial Optimization, Springer, vol. 40(4), pages 1030-1043, November.
More about this item
Keywords
Inverse optimization; Budget constraint; Median problem; Tree graph; Knapsack problem;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:460:y:2024:i:c:s0096300323004654. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.