IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v460y2024ics0096300323004484.html
   My bibliography  Save this article

G1 spline functions for point cloud fitting

Author

Listed:
  • Marsala, Michelangelo
  • Mantzaflaris, Angelos
  • Mourrain, Bernard

Abstract

In this work we present a new construction of basis functions that generate the space of geometrically smooth splines on an unstructured quadrilateral mesh. The basis is represented in terms of biquintic Bézier polynomials on each quadrilateral face. The gluing along the face boundaries is achieved using quadratic gluing data functions, leading to globally G1–smooth spaces. We analyze the latter space and provide a combinatorial formula for its dimension as well as an explicit basis construction. Moreover, we assess the use of this basis in point cloud fitting problems. To apply G1 least squares fitting, a quadrilateral structure as well as parameters in each quadrilateral is required. Even though the general problem of segmenting and parametrizing point clouds is beyond the focus of the present work, we describe a procedure that produces such a structure as well as patch-local parameters. Our experiments demonstrate the accuracy and smoothness of the obtained reconstructed models in several challenging instances.

Suggested Citation

  • Marsala, Michelangelo & Mantzaflaris, Angelos & Mourrain, Bernard, 2024. "G1 spline functions for point cloud fitting," Applied Mathematics and Computation, Elsevier, vol. 460(C).
  • Handle: RePEc:eee:apmaco:v:460:y:2024:i:c:s0096300323004484
    DOI: 10.1016/j.amc.2023.128279
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300323004484
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2023.128279?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:460:y:2024:i:c:s0096300323004484. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.